August 2019 Sea Ice Outlook Key Statements														
Contributor	Туре	Dynamic Model Type	Arctic Extent	Antarctic Extent	Alaska Extent	Hudson Bay Extent	Median	Range	Standard Deviation	Estimate Summary	Executive Summary	Method Summary	Sea Ice Concentration Data	Sea Ice Thickness Data
Navy ESPC (Metzger et al.)	Dynamic Model	Not Specified	3	20.1	0.12	o		2.7 to 3.2 million km2		The uncertainty estimate is the range of the 10 member ensemble.	The projected Arctic 2019 September mean sea ic extent from the Navy Earth System Prediction Capability (ESPC) is 30 million km2. This projection is the average of a 10 member time-lagged ensemble using initial conditions from J July to 10 July 2019. The range of the ensemble is 2.7 to 3.7 million km2. The projected Antarctic 2019 September mean sea ice extent is 20.1 million km2 with an ensemble range form 19.2 to 20.8 million km2. Note that our ensemble range forms present a full measure of uncertainty.	We performed ensemble forecasts with the Navy ESPC using initial conditions on 2019-70-71 1224 trough 2019-71-01 122. The atmospheric initial conditions are from NAVDAS-AR (Xu et al. 2005), which is part of the NAVGEM (Hogan et al. 2014) operational suite. The ocean/seai ce initial conditions are from the Navy 53 Dura CODA data satisfication system (Cumming 2005), which is a component of GOF 3.1 using HYCOM and CLCE (Mergare et al. 2014). SSMS and AMSR2 ice concentrations are assimilated with NCODA (POC) (POC) (POC) (POC) (POC) correction performed on the results.	Sea ice concentration in the Navy ESPC forecasts was initialized from GOFS 3.1 (https://www7320.nrlsc.navy.mil/G LBhycomcice1-12).	Sea ice thickness in the Navy ESPC forecasts was initialized from GOFS 3.1 (https://www.320.nrisc.navy.mil/GLB hycomcice1-12).
Sanwa Elementary School (lihoshi et al.)	Heuristic		3.06								Monthly mean ice extent in September will be about 3.06 million square kilometers. We estimated the minimum ice area through discussion among 22 students based on the ice map from 2004 to 2018.	Monthly mean ice extent in September of 2004,2006,2008,2012,2012,2014,2016 and 2018 from the ice concentration map, by approximating the ice cover with a triangle or trapezoid. Based on this rough estimation, we discussed a yearly change of the ice area and calculated the ice area of this September.	SIC is not used.	SIT is not used.
GFDL/NOAA (Bushuk et al.)	Dynamic Model	Not Specified	3.21		0.03	0	3.14	2.75-3.80	0.31	These statistics are computed using our 12 member prediction ensemble.	Our August 1 prediction for the September-averaged Arctic sea-ice extent is 3.2 stimilion km ² c, with an uncertainty range of 2.75-3.80 million km ² . Our prediction is based on the GFD e1.00 Kensemble forecast system, which is a fully-coupled atmosphere-land-ocean-sea ice model intilaized using coupled data assimilation system. Our prediction is the bias-corrected ensemble mean, and the uncertainty range reflects the lowest and highest sea ice extents in the 12-member ensemble.	Our forecast is based on the GPDL forecast-oriented Low Ocean Resolution (FLOR) model (Vecchi et al., 2014), which is a coupled atmosphere-land ocean-sea ice model. The model is initialized form an Ensemble Kalman Filter coupled data assimilation system (ECDA, Zhang et al., 2007), which assimilates observational surface and subsurface ocean data and atmospheric remarylisis data. The FLOR atmospheric initial conditions are produced from an AMP run forced by observed Strands and is and a the Conduction or thickness data. The FLOR atmospheric initial conditions are produced from an AMP run forced by observed ST and saice. Historical radiative forcing is used prior to 2005 and the RCA-5 scenario is used for predictions and 2005. For the predictions initialized after 2004, the aerosolia are fixed at the RCA-5 scenario year of 2000. The performance of this model in seasonal prediction of Arclic sea ice earch has been documented in Maadek et al. (2014), Bushuk et al. (2017), and Bushuk et al. (2018). For an evaluation of the model 'S apprendbre sea ice extent predictions lintialized after the full conditions are provided pdf.	No SiC is assimilated, but the sea ice state is constrained by ocean and atmosphere assimilation.	No SIT is assimilated, but the sea ice state is constrained by ocean and atmosphere assimilation.
NSIDC, CU Boulder (Horvath et al.)	Statistical		3.51								This statistical model computes the probability that sea ice will be present (concentration above 1556) for each grid cell in KSDC's polar steroographic projection. Yearly data from 1980 through the present are used in abayesian logistic regression. Predictors include local surface air temperature, downwelling longwave radiation, and sea ice concentration, as well as the first principal component of geopotential height at 500mbars, and Pacifica and Atlantic sea surface temperatures. This model predicts a minimum September sea ice extent of 5.59 million square km. Sea ice concentration data was obtained from KSIDC'S sea index V3 (Data Set ID: 602135), all other variables are from NASA's MERRAC dataset.	Yearly data from 1980 through the present are used in a Bayesian logistic regression to predict the probability that sea ice concentration will be above 15%. To estimate total sea ice extent, grid cells with a percentage above a certain threshold (chosen from a drop one cross-validation test) are multiplied by the pusce are aprid dataset provided by NSDC's polar stereographic toolset and then summed. This model predicts a minimum September sea ice extent of 5.5 million Rm. Zea ice concentration data was obtained from NSIDC's Sea Ice Index V3 (Data Set ID: G02135), all other variables are from NSA's MERRA2 dataset.	NSIDC's Sea Ice Index V3 (Data Set ID: G02135) NASA's MERRA2 dataset	
Morison, James	Heuristic		3.8								email rec'd 11.00 pm (AKOT) on 12.June : Hi Batey, Well we just got back from the historic last C-130H mission from USCG Ar Station Kodiak. The long serving its we being replaces by the C-1301 model. Our Seasonal ce Zone Recommissance Survey (SIZKS) flight was successful. We flew up 150 degrees W mailing occanographic traiton with begendable probes every degrees to Mailon gocamographic traiton with begendable probes every attranspheric drops on deformation with any endballe probes every degrees to Mailon gocamographic traiton with any endballe probes every degrees to Mailon gocamographic traitable ice observations are that the let edge has already retreated to 72 degrees. Its and there was a lot of olen water even up to 76 degrees. The source of the spear around the Arctic Ocean and look at the AQ, but to timefor that, its already midnight Facific Daylight Time. To be any later and still be on the 12th, 10 have to be in thiswall. So aw today, my Hesh from looking out the window is al million square km awrage Sept 2019 ice extent. Method would be politiety called heuristic, and as ever the outlook recognises that thissumme's wasther trumps everything else and is for the most part unknowable. Best regards, Jamie			
NASA GSFC (Petty)	Statistical		3.89	18.39	0.15				0.39	The uncertainty represents one standard deviation of the prediction interval.		In this forecast we use sea ice concentration (SIC) data (1979-present day), derived from passive microwave brightness temperature using the N4SA Team algorithm. The SIC data are deriended spatially using linear trend persistence (from the given forecast year) then averaged, to generate a detrended SIC dataset. Alesst-squares linear regression model is fit from the mean detrended SIC dataset. Alesst-squares linear regression model is fit from the mean detrended SIC data are applied to the SIE forecast, the relevant monthly mean/detrended SIC data are applied to the linear regression model. See my website (http://alekpetty.com/blog/2017ArcticForecasts) for more details.	NSIDC NASA Team, https://nsidc.org/data/nsidc-0081, https://doi.org/10.5067/U8C09DWV X9LM.	
GioSea (Blockley et al.)	Dynamic Model	Not Specified	3.9					Arctic: +/- 0.4 million sq km	Arctic: 0.2 million sq km	Uncertainty range is provided as 4/- 2 two standard deviations of the (42 member) ensemble gread around the ensemble mean.	A dynamic model forecast made using the Met Office's seasonal forecasting system (GloSea). GloSea is a fully coupled Atmosphere-Ocean- sea Ice-Land (AOLL) model that produces a small 2-member ensemble of 210 day forecast sech day. Forecasts initialized over 21-day period are used together to create a 42-member lagged ensemble or forecasts of September sea ice cover.	Ensemble coupled model seasonal forecast from the GloSea5 seasonal prediction system [MacLachlan et al., 2015], using the Global Coupled 2 (GC2) version [Williams et al., 2015] of the tableROS coupled model flewitt et al., 2011], Forecast compiled together from forecasts initialized over the 21 day period centred on the 11 July 2019 (2 er day, 24 in total flow an ocean and sea ice analysis (FOAM/NEMCWAR) [BloCkley et al., 2014, Peterson et al., 2015] and an atmospheric analysis (MO-WWP/AVIP) [Rawlins et al., 2007] using observations from the previous day, Special Sensor Microwave Image Sensor (SSMS) [ce concernation observations from EUMERSA 605.44 (C)SAF4 were asimilated in the ocean and sea ice analysis, along with satellite and in-situ ST, sub surface temperature and salinity profiles, and sea level anomalies from altimeter data. No asimilation of ice thickness was performed.	Sea ice concentration (as all variables) Is initialised using the operational FOMO coena- each can advis. SSMS sea ice concentration is assimilated using the EUMEXTA OG-SAF (OS- 4010; See Hotz/Joissif march odocs/osist_do p3_ss2_pum_jce-conc_v1p6.pdf)	Sea ice thickness (as all variables) is initialised using the operational FOM ocean-sea ice analysis. Sea ice thickness is not assimilated in FOAM.
Simmons, Charles	Statistical		3.91						0.314 million square klometers		We loosely model the contributions of ocean heat and insolation to sea ice metting. To model insolation, we use measurements of northern hemisphere snow area and sea ice area. To mode ocean heat, we use measurements of CO2 concentrations.	This is a variant of Rob Dekker's prediction. Dekker performs a linear regression on northern hemisphere anow area, sea ice area, and sea ice extent. Predictions of more or less small quality can be obtained by substituing Extent with another series that tends to increase or decrease over time, including the year. We choose to use the CO2 concentrations amesured at Natura loss a being a particularly provocative mesure. Additionally, Dekker performs the regression on a subset of available data, we use all the available data.	We do not use SIC nor STL. We use the following data sources: Average monthly northern hemisphere snow area: https://limate.rutgers.edu/nowcov er/abia_racs.php/u_stet- Average monthly northern hemisphere sail cararas, tpp://sidask.com/ada edu/DATASETS/ NOAMOOL 135./source_analysis.fee_IC e_inder_Monthly_Data_with_Statistic c002135_v3.0.stx Average monthly NOC concentration at Monas Loss tpp://stap.com/comcagen/products/fr	

UCL (Gregory et al.)	Statistical	3.92			.28	Forecast method produces estimates which are Gaussian. Therefore each forecast is presented with a mean and standard deviation	This statistical model computes a forecast of pan-Arctic September sea ice extent. Monthly averaged Juy sea ice concentration fields between 1979 and 2019 were used to create a climate (complete) network of July sea ice concentration data. This was then utilised in a Gaussian Process Regression in order to forcast September extent. The model predicts pan-Arctic extent of 3.9 million squarekilometres. Sea ice concentration data were taken from KSIDC (cavalieri et al., 1996; Masianik and Strover, 1999).	Monthly averaged June sea ice concentration [SiC) data between 1979 and 2019 were used to create a June SiC climate(complet) network. Individual SiC grid cells were first clustered into regions of spatic-temporal homogeneity by using a community detection algorithm. Links between each of these network regions (couraince) were then passed into a Gaussian Process Regression in the form of a random walk covariance.kernel. Hyperparameters of the model were defined through Bayesian inference with MCMC sampling, in order to ultimately derive the forecast.	NSIDC NASA Team Sea Ice Concentrations: 1979 - 1987: Nimbus-7 SSMR 1987 - 2007: DMSP F-8, F-11, F-13 SSM/Is 2007 - 2017: DMSP F-18 SSM/I 2017 - 2019: Near-real time SIC	
McGill Team	Statistical	3.99				RMSE: 0.50 million square kilometers. From comparison of hindcasts to the observed minimum September sea iccestent.	Our research focuses on sessonal predictability of sea ice in the Arctic Ocean, using observation-based approaches. We are interested in the winter preconditioning effect on the pack ice before the summer melt. Specifically, we investigate the owd yannic processes affect preconditioning, in other words, we ask how anomalies in the general circulation of saic eval influence and the order of the Arctic Ocean pack ice under a trypical melt season. We investigate the skill of different saice prediction, including antup sopheric forcing parameters that physically connect to wintertime sease (a dynamics. The dowelSift method builds on the corralation between winter fram Strain saice expected in Williams et al. 2016. A positive anomaly of the winter fram Strait sea ice aport is associated with enhanced circulation of ice through the Transport informance and solutions of younger and thinner ice in the peripheral seas, which is more vulnerable to melting in difference between Greeniad and a Svalbard as a growy for area of ice aported through fram strait. Seale tends to flow parallel to isobars and the pressure difference across fram Straitae with seal con- goting through fram strait. Seale tends to flow parallel to isobars and the pressure difference across fram Straitae with seal une and therefore enable the continuous update of dowelds if neceastd uning and therefore enable the continuous update of dowelds if neceast during and therefore enable the continuous update of dowelds if neceast during and therefore enable the continuous update prediction Network with the are supporting the astivities on the sea large clicition to the Sea lece Outlook.	The dovekSIE prediction for the minimum September ice extent is 3.99 million square bilometers. The dovekSIE prediction is computed as a sum of the linear trend (climatology) and departure form the trend (international variability). We take the long-term linear trend in a time series of the minimum September sail come extent over the 1993-2013 Period. A negative departure from the trend is projected for the 2013 September minimum sail ce attent. We use the integrated sailevel pressure difference across Tam Strait from November 1 to Nay 31 in a linear least squares fit model as a predictor for the anomaly of monthly mean September sail ce extent over the same period. Using this method, the September mean sea ice extent predictions are only marginally different from the minimum sea ice extent predictions.	NOAA/NSIDC, Sea Ice Index, Version 3. http://doi.org/10.7265/N5K07278	
NASA GISS / McGill University	Statistical	4		0.44 millio	lion sqr km	An error analysis of a hindcast using this method was done in Williams et al (2016)	It has been shown that the September seak-ice extent anomaly is significantly, correlated with the mean Actic Occilitation (AD) inde- during the previous winter. The mean AD provides a characterization of the mean atmospheric circulation pattern which in turn drives the sea- les circulation during the venitor. In other words, the wind pattern soscitated with the positive physics of the AD mainly increased numbers and strongch of cyclones pneutrating deep into the Actic region) lead to enhanced assess eegont through Fram strait, and an anomal ouly younger (thinner ice cover in the Sherian shelf ease. These two processes provide a proceeditioning effect which exits the stage of additional lead loss when compared to a typical melt season. We, therefore, use the winter mean AD index as a predictor for the September seak-ice estent trend of September seak-ice estent.	We perform a linear regression between the detrended September mean SIE and the winter mean (DIFMA) A0 index during the period 1993-2018. This allows usto form a prediction for the 2015 Spettomber su-ice extent anomaly using this past year05 & 0 index, derived from SIP observations. For this year, the winter mean A0 index was 0.481, which translates into a Sept SI Earnomaly of -0.14 million km2. This anomaly forecast is then added to an extrapolation of the linear trend line from 1993-2018. The linear trend forecast for 2016 s41 million km2. Support of the september mean SIE of 4.00 million km2.	NSIDC Sea Ice Index Version 3: https://nsidc.org/data/G02135/versi ons/3	
UIUC (Zhan)	Statistical	4.04		+/- 0.2 million km2		The uncertainty range is estimated from the standard error of the correlation between June TOA-RSR and September SIE.	Our prediction is based on the strong correlation between detrended June top-of-atmosphere (TOA) reflected splar radiation (RSR) and September Sea Ice Extent (EI) anomalies, as proposed by Zhan and Davies (2017). This method is telling because the main contributor of TOA RSR anomaly in June is from the change of underlying surfaces and the sait cost state in early summer (June) largely determines the total absorbed shortwave solar radiation during the whole melt season.	Our contribution is formulated by adding the main contribution part from September Sit ered (2002-2018) with the anomalous part from the Lone RSR (2019) anomaly. The detailed description of calculation is as follows. The detrended June RSR anomaly (2019) Is-3.25 W/m2. The corresponding September Sit anomaly Is-0.25 (-3.25 * 0.0781) million km2. The triangle anomaly of September Sit Is-0.00 million km2 per year. The 2019 September Sit Group Is to Add (-3.29 %-QO0 2.25) million km2. The predicted September Sit Group Is to Add (-3.29 %-QO0 2.25) million km2. Note that the coefficient of 0.0781 is estimated from the detrended anomalies of June TO-ARSR and September Sit Etowen 2002 and 2018.	We do not use SIC dataset. Instead, we use seal ceinder (Version 3.0) product (NSIDC, NASA Team, https://nsidc.org/data/020135, doi: https://doi.org/10.7265/N5K072F8).	
NSIDC (Meier)	Statistical	4.06 17.87		6.5	.36	Uncertainty is based on the standard deviation of projected extents using the daily ice ioss rates from 2007 to 2018.	This method applies daily ice loss rates to extrapolate from the start date (Juguat 1) through the end of September . Projected September daily estimation of the start of the september . Projected September daily estimation and the start of the september . Projected September daily estimation and 2002 2018. The 2007 2018 swerge daily rates see used to estimate the dofficial submitted estimate. The predicted September awarge estern for 2019 is 4.06 (£0.36) million square kilometers. The minimum daily stemt is predicted to be 3.04 (£0.37) million square kilometers and occurs on 14 September. This represents a significant drop from the July contribution of 3.34 million square kilometers due to rapid melt through July. The range of estimates effects the continued variability in the loss rates over the final 1+ months of the met season. Based on the last 14 years, one of the projections (using 2012 rate) indicate that 2019 will be lower than the current record low estern of 2010 July labe were and the statellite record. Using the same method, the predicted Antarctic awarge estent for 2018 is 17.8 (10.30) million square kilometers. The maximum daily actent 15 predicted to be 17.97 (£0.22) million square kilometers and occurs on 2 October.	This method applies daily ice loss rates to extrapolate from the start date (August 1) through the end of September. Projected September daily extents are averaged to calculate the projected September average extent. Individual vars from 2007 to 2018 are used, as wereage over 1981-2010 and 2007-2018. The 2007-2018 average daily rates are used to estimate the official submitted estimate. The method essentially provides the range of September catents that can be expected based on how the ice has declined in past years, though 1: is possible that record fast or siow adily constates may vide avulce outside the projected range. It also can provide a probability of a new record by comparing how many years of loss rates vided a record relative to all years. It has the hendit that it can easily and frequently (dail) if desired) be updated to provide updated estimates and probabilities and as the minimum approaches the "window" of possible outcomes narrows.	Maslanik, J. and J. Stroeve. 1999, updated dally. Near-Real-Time DMSP SSMS Dally Polar Gridded Sai tec Concentrations, Version 1. Boulder Colorado USA. NASANational Saow and Ice Data Cetter Distributed Active Archive Center. doi: https://doi.org/10.507/JBCGD9WL XSUM. Fetterer, F., K. Konvels, W. Meier, M. Savole, and A. K. Windnagel. 2017, updated dally. Sace Index, Version 3. Boulder, Colorado USA. NSIOC: national Snow and Ice Data Center. doi: https://doi.org/10.7265/NSK072F8.	
CPOM (David Schroeder)	Statistical	4.1		3.6-4.6 0.).5	The given uncertainty is the mean forecast error based on forecasts for the years 1984 to 2018.	We predict the September 2019 ic extent will be 4.1 +/- 0.5 million km2. This means there is a 79% likehood it will be among the lowest 3, 66% among the lowest 2, and 15% it will be a newminioum record. The simulated met pond fraction in june 2019 has been higher when in any June before.	This is a statistical prediction based on the correlation between the ice area covered bymelt-ponds in May and ice extent in September. The melt pond area is derived from a sinulationwith the sease incomed CICE in which we incorporated a physically based melt-pond model J.See our publication in Nature Climate for details?. References: I. Rocco, D., Schrij der, D., Feltham, D. L. & Hunke, E. C., 2012: Impact of melt ponds on Arctic saire simulations from 1990 to 2007. J. Geophys. Res. 117. C09032. Schrij der D., D. Hetham, D. Flocco, M. Tsamados, 2014: September Arctic sas-iceminatum predicted by sering melt-pond fraction. Nature Clim. Change 4, 353-357, DOI:10.1038/MCLIMATE2203.		
Sun, Nico	Statistical	4.13	0.22	0 4.13 3.984.25		The uncertainty is based on the 2007-2018 remaining met condition variations.	The forecast model is based on ice persistence. It uses incoming solar radiation and sea ice albedo derived from a predicted Sea Ice Concentration (SIC) value to calculate daily thickness isosefor every NSIDC 25km grid cell. The initial thickness is calculated from AMSR2 eas lice volume and NSIDC SIC data. The mean forecast uses the 2007-2018 mean SIC (1/4 weight) and mean SIC change per day (1/4 weight) to predict future SIC. The low forecast reduces the predicted SIC by 0.383kdv for previously observed SIC for this day and a 10% increased bottom mett. The high forecast increases the predicted SIC by 0.205kdv and a 10% decreased bottom mett.	Each grid cell is initialized with a thickness derived from the AMR82 Sea Ice Volume model (https://coopherecomputie/USVI)). For each day the model calculates average thickness loss per grid cell using the easet solar radiation energy and the predicted sea ice concentration as an abadeo value. Ice-loss(m) =Energy(solar in MU)*(1.5:C) / Icemeltenergy SIC = sea ice concentration icemeltenergy = Metherengy per Mail (Sa 35.5) KJ/Ag*1000(ms)/dm)*0.92(dents/ty)/1000(MJ/K)) For 2019 the model was upgraded with a bottom-meit model and a radiation of thermal energy back to space. This allowed the model to forecast the initial refreezing period during late September. In the August forecast the predicted as ice field is nerged with observed data from August 10 to August 13.	NSIDC NASA Team, http://doi.org/14sa/bride-0081, https://doi.org/10.0507/UBC009WV X3LM. Initial SIC 131 June 2019. The model used observed SIC until 131 August 2019 to calculate melt.	AMSR2 Sealce Volume model (v1.5), 10th August 2019, developed by Nico Sun https://cryospherecomputing.tk/SIT)

Univ. of East Anglia (Cawley)	Statistical	4.1452		4.1452	3.0324 - 5.2580 (Bayesian credible region)		Gaussian Process models provide the posterior predictive distribution. Descri Include/wper- parameter uncertainty.	This is a purely statistical method (related to Krigging) to extrapolate the long term trend fromprevious observations of September Arctic sea ice extent. As this uses only Septemberobservations, the prediction is not altered by observations made during the Summer of 2019.	A Gaussian Process model, with a squared exponential covariance function, is used to model thehistorical NSIDC September Arctic sea ice extent dtat. The hyper- parameters are optimised bymamining the marginal likelihood for the model (marginalising them would probably be betterto include the additional predictive uncertainty due to uncertainty in estimating thehyper-parameters.) The model was implemented in NATLAB using the GPAm anameters.) The model was toolbox(http://www.gususianprocess-org/gpmi/Code/matilab/doc/). An im ages has hopefull beenuploaded showing how the predictive uncertainty increases as the ondel extrapolets into thefuture. For an animation howing how the model changes as the anount of calibration distain creases, see https://httust.com/GauinC_anou/status/10049780385764448.		NSIDC September average Arctic sea ice extent data.
NSIDC (Barrett/Slater)	Statistical	4.16						This projection was made using the Slater Probabilistic Ice Extent model developed by Drew Slater (http://ciresi.colorado.edu/*aslater/SEAUCE/). The model computes the probability of sea ice concentration greater than 15% for Arctic Ocean grid cells in the EASE 25 km grid. These probabilities are aggregated over the model domain to arrive at daily to extents. A September mean ice extent is calculated from daily forecasts issued on August 1. While the model share inclusion and its lead times forecast issued on August 1 for September have lead times spanning to 50 duys, NSDC runs the forecast model with a 50 duy lead time. Forecast issued on August 1 for September have lead times spanning 31 to 61 days. Therefore we consider the mean September ice extent forecast for the July sea ice outlook to have some skill.	This is a non-parametric statistical model of Arctic usa ice extent. The model computes the probability of whether ice concentration greater than 15% will exist a particular location for a particular lead time into the future, given current ice concentration. The only input is sai ice concentration. Probabilities are computed using data from the parto 1943. The probabilities are accomputed using data from the parto 1943. The probabilities are accomputed product of gird boars are the probability of a gird boar containing ice on the forexast date. While not as sophisticated as a coupled ocean-ice-atmosphere models, this statistical method has the davantage that the forexasts for all points are completely independent in both space and time; that is, theforexast at any given point in cont date: While not asophisticated as a coupled ocean-ice-atmosphere models, this performed will in comparison to others in the 2013/2014 SIPN Outlooks, in both extent value and spatial distribution. For 2012, a September mean forexast of bedow a million gaure kilometers in any given. However, the model has an isofa of sharing using using kilowet and statisticated brack and a Os finillion square kilometers in a song avold gas. Skill improves as lead time decreases, and September is the month hwith highest skill.	NSIDC NASA Team, https://maidc.org/aba/maidc-0081, https://doi.org/10.5067/U8C09DWV X9LM.	
IARC (Brettschneider et al.)	Statistical	4.168		4.168	Upper: 4.631 million sq. km. Lower: 3.762 million sq. km.		The range assessments represent 95th and 5th percentile confidence intervalis. We use the unaftered 11 Reanalysis data sets.	The International Arctic Research Center has developed a prototype model to estimate Arctic sea ice extent using an analogs approach. The analogs approach looks at prior years and finds the best matches that most closely represent the current state of the atmosphere in 2019. The model run in early August 2019 indicates Systembers saic ewill be substantially below than the most polated linear trend of the previous four decades. We estimate a whith y extent of 4.168 million square kilometers.	Our statistical model uses the NCEP/NCAP (R1) Reanalysis data sets to develop analog matches of atmospheric variables that correlate with sea ice extent. The R1 data covers the time period of 1948 present. The model generates an estimated deviation from the 1979-2015 Septembers saice inleares that the R1 une through July time periods of cache year, and then 6100 work the seasonal decline in sea ice through the following September. The variables using the pressure, 3150 on beights, 31 2-aret termperatures, J 292 mb temperatures, and 5) sea surface temperatures. Acomposite forecast is developed from a regression-weighted model.	Our model assumes no a priori knowledge of the urrent extent of Arctic sea ice. It does, however, rely on the NSICD published monthly September sua ice actents prior to the current suaron to estimate the long- term trend line. We use the same linear trend that NSICD adds to their published monthly extent graphics. Data surces: Chapman, WL. and J. E. Walch. 1991, updated 1996. Arctic and Souther Ocean Sea Ice Concentrations, Version 1. Indicate subset used]. Buolify, Colorado USA, NSIDC: National Snow and Ice Data Cartete	Our model does not utilize sea ice thickness.
John, Christian	Statistical	4.17		4.17		0.33	Its the Standard deviations of the difference between Model and Observation (1980-2016)	The Model is based on the idea, that June has the possible power to reflect triggering of powerful feedbacks, e.g. Albedo-Feedback. It shows up, that the June is very able to forecast the September Sealce Extent (NSIDC).	Model-Extent=d+ (a*[a:b])-d+(a*c) a = (Air-Temperatur (1:))-A:Sea Surface Temperatur (1:0)-Sea Surface Temperatur (1:0)-September-Extent (1:1) c Coeff a.b d=September-Extent (1:1)		
NASA GSFC (Sewnath)	Statistical	4.18						This contribution originated from a desire to leverage modern statistical methods to create sea ice extent predictions. Though there is a historical, underlying linear trend in the data itself. Its recent nonlinear travine demands a statistical model that could represent this nonlinearity while taking into consideration the relative scarcity of usable data. Through experimentation of different statistical models, the Convolutional Neural Network (XNN), when formulated for a "pixel-wise" regression, could create a compeling nonlinear mode by leveraging both time information (in the layers of the input data, as well as patial information undividual grid cells by including data from each grid cell along with a border of cells around it.	To train the CNN, a collection of 3D volumes representing information about a particular grid cell along with information about its neighboring grid cells is used as input data. Each 3D volume's madup of player spresenting theire concentration for a given month along with information from thet wo months player. A couple diaryer spresenting the coordinates for the grid cells are also added to these volumes. These inputs are field in a CNN model made up of conclutional layers, one pooling layer, and two dense layers with dropout. The output of the model returns predictions for the ice concentration at the particular grid cell for thenext two months.	NSIDC NASA Team, https://nsidc.org/data/nsidc-0081	
Dekker, Rob	Statistical	4.22				380 km^2		The concept behind my method pertains to estimating albedo-based Actic amplification during the melting season. I use the "whiteness" of the Actic in June as a predictor for how much ice will melt out between June and September. I use three variables [I and sow cover, ice concentration, ice area] of "whiteness" that are valiable in June, in a regression formula which shows particularly strong correlation with Sept sea ice extent minimum. Past performance of this June forecast method for September ice extent Ast performance of this June forecast method for September ice extent http://forma.articis.es ice.met/index.php?actioneliattach.topic.v32.0.gsttach=10.40209.jim.age The interesting finding is that the June land snow cover signal is clearly present in the September ice extent numbers, suggest ing and sow cover could be used to improve sea ice estimates in other models as well.	The concept behind my method pertains to estimating albed-based Arctic amplification during the melting asson. Lue the "whitese" of the Arctic in June as a predictor for how much ice will melt out between June and September Specifically. Let up a formula which reflects how "arks" trans near the Arctic in June would create heat that will melt out ice over the months until the September minimum. As an excitcad guess, such a formula could take the following form : Melt_formula = 0.25 * 5now - 1.0 "(Extent - Area) - 0.5 * Area With factors explained like tiths: For (Extent - Area): 1.0 (assuming that ALL solar radiation onton meting ice and into polynia will cause ice to melt later in the season. For (Area): 0.5 (assuming that half of the heat absorbed in the ocean OUTSIDE of the amin pack will cause ice melt kynih the the sate bactored in ware up. For (snow cover): 0.25 (assuming that half of the heat absorbed in the ocean OUTSIDE of the blown North, and half of that will go to ice melt. Then 1 set up a regression equation for how much ice will make to the the heat absorbed in the ocean OUTSIDE of the Melt_formula to absists the bact correlation (for 0.4 %) is this one (centered to (extent - ang). Melt_formula = 0.434* noncover - 1.0 *(center - ang). 40.5 * rang, which is remarkably close to the * elucated guess fractore suplaned above. This suggests that this formula a creation (for 0.4 %) is this one (centered to (extent - ang). Melt_formula = 0.432* noncover - 1.0 *(textent - ang). 40.5 * rang, the formula, for the period 1992 - 2.15, lotata Rx 0.49, heta = 0.368, and a prediction for \$422.019 is centered for 42.2 million thm? 2 with a standard deviation or 338 k km?? Core to the * elucated guess fractored guess fractore suplicing above. This standard deviation is substantially smaller than the 500 km? 230 km? 2.7. This standard deviation is substantiall	Land snow cover from Rutgers Snow Lab : https://climaterutgers.edu/nowcov er/table_area.php?ui_set=1&ui_sort= 0 Sea Ice Area and Extent from NSIDC : ftp://idads.colorado.edu/DATASETS/ NOAA/G02135/north/monthiv/data/	
UCLA (Kondrashov)	Statistical	4.23	0.35	0.1MKm2			This uncertainty corresponds to standard deviation of stochastic ensemble spread.	This statistical model forecast is based on inverse modeling techniques applied to the regional Arctic Sea ice Extent (SIE) dataset.	Nonlinear inverse modeling techniques have been applied to the regional Arctic Sea Le Cettent (SE) from Sea Le Index Version 3 dataset. The daily SE data were aggregated to provide weekly-sampled dataset over several Arctic sectors. The predictive model has been derived from SE anomalies with annual cycle removed, and is initialized from latest SE conditions (August 2019) by ensemble of stochastic noise realizations to provide probabilistic regional Arctic locenast in September, as well as pan-Arctic ones. 1. Kondrashov, D., M. D. Chekroum, and M. Ghil, 2018: Data-adaptive harmonic decomposition and prediction of Arctic sea Lee extent, Dynamica and Satatistic of fourtain edges, Physica D, 297, 345, 56, 101: 2016/j. physd. 2014. 2005.		

METNO SPARSE (Wang et al.)	Dynamic Model	Ocean-sea ice	4.25							This prediction is made by a coupled ocean-sea ice model, with surface atmospheric forcing from ECMWF seasonal forecast SEAS product. The initial field was set on 15 Jan 2019, with theocean field from climate January mean, and statilite observed seal ce concentration and sea ice thickness, we combine three 3-months forecasts of SEAS from January, April and July to form the atmospheric forcing field. The sea ice concentration is assimilated in the model.		AMSR2 sea ice concentration from Bremen University, ASI Version 5.4, https://seaice.uni-bremen.de/sea-ice- concentration/	The initial seal ce thickness is from a combination of the weekly CS25MOS and daily SMOS, on 15 January 2019, SMOS: https://icdc.cen.uni- hamburg.de/thredds/fileServer/flpthre dd/smos_sea_ice_thickness/v3/ Weekly CS25MOS ftp://ftpsv2.awi.de/sea_ice/product/cr yosat2_smos/
NASA GMAQ	Dynamic Model	Coupled	4.27	0.41	0.00294	Pan-Arctic: 4.28 ; Alaska region: 0.42 ; Hudson Bay: 0.00299	Pan-Arctic: 3.64 to 4.99 ; Alaska region: 0.07 to 0.81 ; Hudson Bay: 0.00000 to 0.00599	Pan-Arctic: 0.38 ; Alaska region: 0.23 ; Hudson Bay: 0.00225	The given uncertainty is the standard deviation of the 10 member ensemble.	An experiment of the GMAO sessional forecasting system using CryoSat-2 derived icethickness predicts a September average Arctic ice extent of 4.27 e 0.3 million km2. The experiment test the septilication of ice thickness data in a near-real time setting for the seasonal forecast system. The forecast suggests a reduced ice over for 2019 as compared to the previous year.	The forecast uses a prototype the GEOS_32S version 3 coupled system that was modified for this forecast. The model has an approximate grid spacing of _ i in both the atmosphere and the ocean. The ocean data assimilation system is driven by a near real-time atmospheric analysis that is similar to MERA2, and uses the local Ensemble Transform Kalman Filter (ETRF) for assimilation of available observations and along track ocean all timetry. A branch of the ODAS system was integrated from 1-December 2018 to 26-Apr 2019 that included nudging to CryoSat-2 seai cet thickness fields over the available time period until 21-Apr. The ensemble used as taggered initialization of 11-Apr, 16 Apr, 21-Apr, and seven additional ensemble members on 26-Apr based on initial condition perturbations of the atmosphere and ocean states.	The seal ce concentration was taken from MERRA-2 (doi:10.0667/K70/01.32248), which may be retrieved from the Goddard Earth Science Date and Information Services Center (GED DIG). The MERRA-2 seal is concentration in derived from the Operational Sea derived from the Operational Sea derived from the Operational Sea derived from the Operational Sea derived From Herberger Analysis speem (DEIX) A concentration which in turn oblisms seal sec from the EUMETSAT Satellite Application Facility on Ocean and Seal te (OSI SAF).	CryoSat-2 Level-4 Sea Ice Elevation, Freeboard, and Thickness, Version 1, https://naidc.org/data/RDET4/, doi:10.5007/96/DOKIP0ASB. The data were incorporated into the DDAS over a integrated for an additional 14 days integrated for an additional 14 days after the end of the CryoSat-2 data period.
PolArctic LLC	Other		4.3							This is PolArctic's second submission to the Sea Lee Outlook. Our September extern prediction is 4.3 million square kilometers. Our efforts are to investigate the usefulness of Artificial Intelligence and Machine Learning (A/ML) as a predictive tool for Arctic sea ice extent. Hidden and non-linear relationships can be exposed through the use of A/ML when high quality data is available. JOCS daily record for Sea ice extent creates the perfect test bed to leverage and assess the power of A/ML.	PolArctić's Skoptember SIO extent was generated using our Artificial Intelligence algorithm, and trained with historical NSIDC daily ice extent data. Our initial modeling efforts are to generate high quality seasonal forecasts of daily, spatial and temporal sea ice extents. To calculate our September extent outlook, daily results in September 2019 from our model are averaged.	NOAA/NSIDC, Sea Ice Index, Version 3. https://doi.org/10.7265/NSK072F8.	
NCEP CPC	Dynamic Model	Coupled	4.31	0.61		4.29	4.06-4.60	0.14	The median, range, and standard deviation is calculated from the 20- member ensemble.	This contribution is from a 20-member ensemble forecast from the Climate Prediction Center Experimental seaice forecast system (CSmS). Model bias that is removed is aculuated based on 2006-2018 retrospective forecasts and corresponding observations.	The outlook is produced from the Climate Prediction Center Experimental sea ice forecast system (IPSmS). The forecast is initialized from the Climate Forecast System Reanalysis (IPSR) for the ocean, land, and atmosphere and from the CP case ice initialization system (CSIS) for sale c. Wenty forecast members are produced. Model bias that is removed is calculated based on 2006-2018 retrospective forecasts and corresponding observations.		Both seaice concentration and seaice thickness are initialized from the CPC seaice initialization system (CSIS). The CSIS analysis is produced with GFDL MOMS which uses surface fields from CFSR and assimilates satellite seaice concentration retrieval from NSIDC NASA Team
UC Louvain (Massonnet et al.)	Dynamic Model	Ocean-sea ice	4.32	20.9 0.5	0.81	4.31	Arctic: 2.85-5.02 (min- max) Antarctic: 20.14- 21.82 (min-max)	Arctic: 0.62 Antarctic: 0.50	The projection uncertainty is given as the range between minimum and maximum extents in the ensemble. Although relatively wide,	Our estimate is based on results from ensemble runs with the global ocean-sea ice coupled model NEMO3.6-11M3. Each member is initialized from a reference run on Jan 1, 2019, then forced with the JRA-55 atmospheric reanalysis from one year between 2009 and 2018. Our final estimate is the ensemble median, and the given range corresponds to the lowest and highest extents in the ensemble.	Our estimate is based on results from ensemble runs with the global ocean-sea ice coupled model NEMO3.6-LIM3. The ensemble members are expected to sample the atmospheric variability that may prevail this summer. In practice, the model is forced with IPA-55 atmospheric reamply clast after M948 to Des 31, 2018. No data are assimilated during this simulation. The ensemble members are then started from the obtained model stark, each using atmospheric forcing from one year between 2009 and 2018. This choice is a compromise between a sufficiently large ensemble and the rapidly changing Arctic atmospheric conditions in recent decades. The estimate given above corresponds to the ensemble median monthly September extent. No bia-correction is applied.	Initial sea ice concentrations come from a model free run on Jan 1, 2019	Initial seal ce thicknesses come from a model free run on Jan 1, 2019
LASG-IAP	Dynamic Model	Not Specified	4.35			4.35	4.15-4.52	0.08	The uncertainty was estimated by the ensemble member spread.	The prediction for the sea ice outlook June 2019 was carried out on China's Tianhe 2 supercomputer, with a dynamic model prediction system CAS FOGNL5 23 SY 13. The dynamic model prediction system interpredictions 24 SX 91. The dynamic model prediction system interpredictions in the subsection of the seasonal (25) Interactive. FOGNL5 24 27 System has been established in 2017 by R&D team of FGONL5 52 from both L&OS institute of Atmosphere Physics Chinese Academy of Sciences and PARSL Chengdu University of Information Fechnice Academy of Sciences and PARSL Chengdu University of Information Technice Academy of Sciences and PARSL Chengdu University of Information Technice Academy of dynamic model prediction results are used in two major national Climate operational prediction centers in China. Basing on the 60 dep ised dynamic model prediction from Usagus 12.14.82, 2019 the outlook predictions of Sea ice Externa er 4.35 million square kilonmeters for pan- Arctic in September 2019.	FGOALS-F2 525 VI.3 is a global coupled dynamic prediction system. The Initialization of this prediction system is based on a nudging scheme, which assimilates wind compents (U and V), Temperature (T) in atmosphere and potential temperature in ocean from J an 1980 to 11 une 2019, and 40 ensemble members are generated by a time-lag method. The predictions are available here for 6 months. This real-time 52 prediction system is fully operated on China's Tranhe- 2 supercomputer.	None, but the sealice is constrained by atmosphere and ocean initialization	None
Modified CarSIPS	Dynamic Model	Not Specified	4.38			4.37	min=4.11, max=4.38	1 standard deviation 0.15, uncertainty = 20.29 (95% CI)	The uncertainty values were calculated from the ensemble of 20 fsst bias-corrected SIF anomalies (see section 5).	Our Outlook of forecast total blas-corrected Arctic sea ice extent (SIE) and calibrated sea ice probability (SIP) was produced using the Canadian Seasonal to Interannual Prediction System (CanSPS), but (sin 2017 and 2018) in a modified experimental configuration interded to test update to the sea ice forecast methodology. These updates include changes to the data used to initialize both sea ice concentration (SIC) and sea ice thickness (SIT).	CanSIPS combines forecasts from two models, CanCM3 and CanCM4, with a total of 20 ensemble members (10 from CanCM3, 10 from CanCM4). First, the Arctic SIE anomaly was calculated for each individual ensemble member relative to a piecewise linear trand fitted to the respective model's semsmble-memb ISI im series over 1979-2018. These anomales were than added to the NSIDC SIE time series also fit to a piecewise linear trand, and the avaregard over all 20 consemble members to yield a total SIE of 4.38 million square kilometers. The piecewise fit, including the breakpoint year, was chound using non-linear least squares. This bias correction method differs from that used in 2017 and 2018 in an effort to account for trend objective of point and acab model SIC ensemble are not one inflated beta distribution the parametric distribution. We then a ano and one inflated beta distribution the parametric distribution. We then calcular the calSIC will access 15% for exulvalent lengapping (see Dirkson et al. 2019; https://doi.org/10.1175/GL1-b.940224.11, and calculated the calculared predictive probability distribution. Lastly, the average SIP value was taken across CanCM3 and CanCM4 to produce the final SIP field.	SIC is initialized by nudging model SIC to the Meteorological Service of Canada analysis (MSC) with a 3 day time constant. Initia conditions for the August submission are from July 3 1 modged SIC.	SIT was estimated using the statistical model 'SMA3' described in Dirkson et al. 2017 (doi:10.1175/CLL-0-16 0437.1). The parameters in SMA3 were fit using a biended Siz product (Had2 Cls+nda) MA3 Siz described above for July 31 at wort the period 2003. To al. The above for July 31 at wort and real-time predict relief in SMA3 to estimate real-time SIT.
NCAR/CU (Kay, Bailey, and Holland)	Heuristic		4.38			4.44	3.14 (min) to 5.03 (max)	0.4	The uncertainty estimate is based on the scatter in entries in our informal pool.	An informal pool of 29 climate scientists in early June 2019 estimates that the September 2019 ice extent will be 4.3.8 million sq. km. (stddew. 0.40, min. 3.14, max. 5.03). Since its inception in 2008, the KVAK/CU sea ice pool has easily ivialed much more sophisticated efforts based on statistical methods and physical models to predict the September monthly mean Arctic saie iceetarche (e.g. sea peptodic of Stroevet at J. 2014 in GRL doi:10.1002/2014GL059388; Witness the Arctic arricle by Hamilton et al. 2014 http://www.arcus.org/witness.the arctic/2014/2/article/21066). We think our informal pool provides a useful benchmark and reality tchek for Sea ice Prediction efforts based on more sophisticated physical models and statistical techniques.	An informal pool of 29 climate scientists in early June 2019 estimates that the September 2019 ice extent will be 4.38 millions s, km, istidev. 0.40, min. 3.14, max. 5.03, Guesse were collected by sonding an email would to the scientists and tempting them with local bragging rights and with local ice cream.		

Univ. of Washington/APL (Zhang and Schweiger)	Dynamic Model	Ocean-sea ice	4.4								Driven by the NCBP climate forecast System (CFS) forecast at mospheric forcing, PD/NOS is used to predict the total September 2019 Arctic sas ice extent as well as ice thickness field and ice deglocation, starting on August 1. The predicted September ice extent is 4.40±0.40 million square kilometers. The predicted ice thickness felds and ice deglocations for September 2019 are also presented in the attached document.	See above.	Real-time satellite sea ice concentration data (NASA team) from NSIDC for data assimilation in hindcast	CryoSat2 sea ice thickness up to 4/2019 used for data assimilation in hindcast
NSIDC (Group)	Heuristic		4.4						0.33 million square kilometers	The uncertainty is the standard deviation of the 10 individual estimates.	This estimate is based on polling NSIDC employees for their estimates of the September extent. The submitted group estimate is the average of 10 individual contributions.	The method is to simply average 10 individual heuristic estimates.	No specific dataset was used for initialization, but contributors were provided NSIDC Sea Ice Index extent values to inform their estimates.	SIT was not used in this method.
Wu, Tallapragada, and Grumbine	Dynamic Model	Coupled	4.47	20.6							The projected Arctic minimum sea ice extent from the NCEP CFsv2 model with revised CFsv2 May to July initial conditions (ICS) using 92-member ensemble forecast is 4.7 million square kilometers with a standard deviation of 0.77 million square kilometers. The corresponding number for the Antarctic (mainum) is 20.60 million square kilometers with a standard deviation of 0.66 million square kilometers.	We ran the NCEP CFs/2 model with 92-case of May to July 2019 revised initial conditions (ICS). The IC was modified from real time CFs/2 of each day at 002 by thining the Arctic ice pack (based on test from previous year's sai ace outlook) if this thinning would have eliminated ice from areas observed to have sai ce, a minimum thickness of 10 cm waief in place for the ICS. Bias correction was applied to the Antarctic sea ice extent.	NCEP Sea Ice Concentration Analysis for the CFSv2 (May 1-July 31, 2019)	NCEP CFSv2 model guess with bias correction for the Arctic (May 1-July 31, 2019)
Lamont (Yuan and Li)	Statistical		4.53	18.88	0.39					The uncertainty of SIC prediction was estimated based on cross- validated model experiments for 34 years of 2-m lead predictions.	A statistical model is used to predict monthly Arctic sea ice concentration (SIC) at all grid points in the pan-Arctic region (Yuan et al. 2016). The model is capable of capturing the co-variability in the ocean- easi ice atmosphere system. The September pan-Arctic sea ice sents (SIE) is calculated from predicted SIC. The model predicts negative SIC anomalies throughout the pan Arctic region. These anomalies are relative to the 1379-2012 climatology. The September mane pan-Arctic SIE is predicted to be 15 amilion square kilometers (mixin) with a root mean- square-error (RMSE) 610-33 mixim, at the two-month lead. It is 0.18 mixim below September SIE in 2018. Similar statistical models were also developed to predict the SIE in the Adasian region and SIE is predicted to be 0.39 mixim with an RMSE 01.20 mixim. The September mean pan Aractic SIE is predicted to be 18.88, alightly lower than the extent of September 2018, with an RMSE of 0.6 mixim.	The linear Markov model has been developed to predict sea ice concentrations in the pan Arctic region at the seasonal time scale. The model employs 6 variables: sea lce concentration, sea surface temperature, surface air temperature, GH300, vector winds at GH300 for the period of 1979 to 2012. It is built in multi-variate EOF space. The model utilizes first 11 mEOF modes and uses a Markov processto predict these principal components forward one month at imm. The pan Arctic sea ice extent forecast is calculated by summarizing all cell areas where predicted sea ice concentration exceeds 15%.	Sea ice concentration ("NSIDC NASA Team, https://nsidc.org/dtaaf.nsidc- 0081,18c00910,0081,0081,0081,0081,0081,0081,0081	
RASM (Maslowski et al.) 2. Younjoo Lee (Naval Postgraduate School) 3. Anthony Craig (Contractor) 4. Mark Seefedt (University of Colorado) 5. Robert Osinski (Institute of Oceanology, Polisi Academy of Sciences) 6. John Cassano (University of Colorado) 7. Mathew Watts (Naval Postgraduate School) 8. Jaclyn Clement Kinney (Naval Postgraduate School) 9. Xingren Wu (NOA4/NCEP)	3 Dynamic Model	Coupled	4.57		0.393	2.96E-07	4.59	4.23 to 4.90	0.181	The uncertainty of panArctic sea ice extent was estimated from the 27 ensemble members.	We used RASM2_1_00, which is a recent version of the limited area, fully coupled climate model consisting of the Weather Research and Forecasting (WRF). Los Alamos National Laboratory (LANL) Parallel Ocean Program (POP) and Sea ice Model (CICE). Variable infiltration Capacity (WCI) (and Mycrology and routing scheme (RVIC) model components (Maslowski et al. 2012; Roberts et al. or 2015; DUVIvier et al. 2015; Hamma et al. 2016; Hamma met al. 2017.Casmo et al. 2017). The model uses CSRV/CFSv2 reanalysis output for RASM-WRF latera boundary conditions and for nudging winds and temperature starting above 500 mbar. This model initial condition for ensemble forecast was devider form an initicati, forced with CFSV(FSv2 reanalysis for Soptember 1979 through June 2019. The ocean and sea ice initial conditions at the beginning of the initicast were derived from tha 13- year spin-up of the ocean-sea ice model only (RASM 6-case) forced with CORE2 reanalysis for 1948-1979.	As explained in the "Executive summary", RASM is used for dynamic down-scaling of the global NOAA/NCPC CSv2 7 month forecasts. The initial conditions for the July Sea (ce Outlook were derived from the RASM 1373%-QDC2018 hindcast and are physically and internally consistent acrossal the model components. Neither data assimilation nor bias correction was used. Each of the 27 meanble members and forward the 6 months using outputs from CFSv2 reanalysis. The CFSv2 for cing streams used for the samble members were initialized every day (da 000.00 between June 1at and June 27th (no input data were available between 28th and 30th of June) and used for RASM borcing at 00:00 on July 1s, 2019.	Selfgenerated from a 39-year hindcast run.	Self-generated from a 39-year hindcast run.
NMEFC of China (Li and Li)	Statistical		4.59								We predict the September monthly average seaice extent of Arctic by statistic method and based on monthly sea ice concentration and extent from National Snow and Ice Data Center. The predicted monthly average ice extent of September 2019 is 4.59 million square kilometers.	A simple statistical model is used to predict September average Arctic sea ice extent of September is well related with the sea ice extent of Jun in the same year. Combined the regression method and optimal climate normal method, the predicted September average sea ice extent in 2019 is 4.59 million square kilometers.	Sea Ice Index - Daily sea ice concentration(NASA Team) and monthly sea ice extent from National Snow and Ice Data Center.	
UTokyo (Kimura et al.)	Statistical		4.61								Nonthly mean ice extent in September will be about 4.61 million square kilometers. Our estimate is based on a statistical way using data from satellite microwave sensor. We used the ice thickness in December and ice movement from December to July. Predicted ice concentration map from July to September is available in our website. http://ccs.aori.u- totyo.ac.jp/rkimura_n/artic/2019-8.html Ice erterast in the Chukchi-Beaufort Sea and Laptev Sea will be fatter than a normal year. On the other a hand, the erterat speed around the Severnaya Zemiya will be slower than a normal year.	We predicted the Arctic sea-ice cover from coming August 1 to November 1, using the data from satellite microwave sensor, AMSHE (2002/03-2010/11) and AMSE (2012/13-2012), Pincanalysis method is based on our recent research (Kimura et al., 2013). First, we expect the ice thickness distribution in July 15 from redistribution (divergence/convegence) of saic acd uring December and July, based on the daily ice velocity data. Then, we predict the summer ice area depending on the assumption that thick ce remains later and thin ice melts sooner than the average.		
ECMWF SEASS	Dynamic Model	Coupled	4.63				bias-corrected median of the ensemble is 4.64 Mio sqkm	blas corrected ensemble minimum/maximum: 4.51/4.75 Mo sąkm	ensemble standard deviation is 0.12 Mio sqkm	standard deviation of forecast ensemble	his contribution is calculated from the operational ECMWF seasonal forecast from 1st August. This is an ensemble forecast with a global atmosphere-ocean-saice model that is also used for weather forecasting. The model is known to over-predict saice exent in summer, so the average amount of over-prediction for the last 10 years (thes-ocalled bial) of the raw model output has been subtracted to arrive at the number contributed. This bias removal is standard procedure in seasonal forecasting.	Initial conditions for the forecast are from the ECMWF operational atmosphere, ocean, and savice analyses. 51 encemble members are run, constructed from an ensemble of 53 DWAF FAAT analyses in the ocean savice, and from an ensemble of 25 ADVAA analyses with singular-vector perturbations added/utbracted for the atmosphere. The resolution of the atmospheric model is about 35 km, and about 15 km for the Nethernh neuriphere is calculated for each ensemble member, and them the ensemble mean is calculated to arrive at the raw forecast value of 4.90 Mio signi). A cal of re-forecast of monthly-mean September savice settent for 0059/2018 is compared to the NKOC sevice settent for September to astice settent forecast bias as 40.18 Mio signify, which is then aubtracted from the raw forecast to arrive at the calibrated forecast of a 54 Mio significant that has been submitted as a contribution.	Initial sea-ice concentration is from OCEANS, the ECMWF operational ocen/ksa-ice analysis. OCEANS assimilate observed sea-ice level 4- observational product dreived from the OSI-SAF level 3 sea-ice concentration product OSI-401b.	Initial sea-ice thickness is from OCEANS, the ECMWF operational ocean/sea-ice analysis. SEAS5 does not assimilate any sea-ice thickness observations.
FIO-ESM (Shu et al.)	Dynamic Model	Coupled	4.63						uncertainty = ±0.32		Our prediction is based on FIO-ESM (the First Institute of Oceanography- Earth System Model) with data assimilation. The prediction of September part-Arctic teatin 10 219 14.63 (+0.52) million square kilometers. 4.63 and 0.32 million square kilometers is the average and one standard deviation of 10 ensemble members, respectively.	This is a model contribution. The initialization is also from the same model (FIO- ESM) but with data assimilation. The data assimilation method is finsemble Adjustment Kalman Filter (EAKF). The data of SST (sea surface temperature) and SAL (sea level anomaly) from 1. January 1992 to 11 Jun 2019 are assimilated in the FIOE-SM model to get the initial condition for the prediction of the Arctic Sea Ice. There is no sea ice data assimilation.	No dataset are used for initial sea ice concentration.	No dataset are used for initial sea ice thickness.

Met Office (Blockley et al.)	Dynamic Model	Not Specified	4.7	18.2		Arctic: +/-0.4 million sq km; Antarctic: +/-0.6 million sq km	Arctic: 0.2 million sq km; Antarctic: 0.3 million sq km	Uncertainty range is provided as 4/- 2 two standard deviations of the (42 member) ensemble spread around the ensemble mean.	A dynamic model forecast made using the Met Office's seasonal forecasting system (GloSea), GloSea is a fully coupled Atmosphere-Ocean- sea lect-and (AOLI) model that produces a small 2-member ensemble of 210-day forecasts exch day. Forecasts initialised over 21-day period are used together to create a 42-member lagged ensemble or forecasts of September sea lce cover.	Ensemble coupled model seasonal forecast from the GloSeaS seasonal prediction system [MacLachian et al., 2015], using the Global Coupled 2 (EC2) version (Williams et al., 2015) of the HadGKN Soupled model (Hewitt et al., 2011) forecast compiled together from forecast initialized over the 21-day period centred on the tru July 2012 (per day 4.2 lo total) from an ocean adsea lee analysis (FOAM/NEMOVAR) BlocKley et al., 2014, Peterson et al., 2015) and an atmospheric analysis (MO-WWP (AVA) [Rawlins et al., 2020) July observations from the previous day. Special Sensor Microwave Imager Sensor (SSMS) (ee concentration bosevariatons from LUNESFA 06-364 (C)-SAF) were asaimilated in the ocean and sai lee analysis, along with statilite and in-situ SST, sub surface temperature and salinity profiles, and sa level anomalist from altimeter data. No assimilation of lee thickness was performed.	Sea ice concentration (as all variables) is initialised using the operational fOM occen-as ice analysis. SSMs sea ice concentration is assimilated using the EUMERT OGI-SAF (CG)- 401b; See Huz/Joiasi-Mac. Modocs/Joist_Cdo p3_ss2_pum_ice-conc_v1p6.pdf)	Sea ice thickness (as all variables) is initialised using the operational FOAM ocean-sea ice analysis. Sea ice thickness is not assimilated in FOAM.
AWI Consortium (Kauker et al.)	Dynamic Model	Not Specified	4.71				0.15	Ensemble spread		For the present outlook the coupled sea ice ocean model NAOSIM has been forced with atmospheric surface data from January 1948 to August 111h. 2019 (combination of VCEP/NC48andNCEPC-VCFS and NCEPC-VCE). All ensemble model experiments have been started from the same initial conditions on August 11th 2018. The model surph as not changed with respect to the S0 io 12015. We used atmospheric forcing data from each of the years 2009 to 2018 for the ensemble experiments have been started from the same initial conditions of the ensemble same of 2019. The use of an ensemble allows to estimate probabilited in the summer of 2019. The use of an ensemble allows to estimate probabilited sal-ice extent predictions for September 2019. Avantational assimilation system around NAOSIM has been used to initialize the model using the Alfred Wegener inititute's CrycSat-12 cie thickness product, the University of Brenne's now depth product, and the OSI SAF ice concentration and sa-surface temperature products. Observations from March and April were used. Abias correction scheme for the CrycSat-2 ice thickness which employs a spatially variable scaling factor could enhance the skill considerably (Kauster et a. 2015. http://www.the-cryosphere- discuss.net/tc-2015-171/).	AWI Consortium (Kauker et al.) OSI SAF EUMETSAT 03I-401b March and April 2019http://ostam.etm.n/docs/yosisa {_cdop3_ss2_pum_leeconc_v1p6.pdf 	CryoSat-2 from Alfred Wegener Institute of March and April 2019 (Hendricks, S. and Ricker, R. (2019): Product User Guide & Algorito Guide & Algorito Lechtickneskyerison 2.1), Fechnical Report, John 2006 (abb a 266- c4fdd022877f, https://epic.awi.de/id/e print/49542/).
NMEFC (Zhao, et al.)	Dynamic Model	Ocean-sea ice	5.62						This Sea Ice Outlook Is a part of the official sea ice service for Chinese Arctic activities during summer 2019, targeting for icebreakers and commerical ships.	The sea ice prediciton was carried out by National Marine Environmental Forecasting Center (China), using a ocen sea ice coupled model, MTgcm. The prediction was initialized on August 2, 103 and run for 3 months, force dby CF5 operational forecast initialized on 2030/80100. The initial condition came form a operational assimilation system by saximilating seat ice concentration and thickness. The sea ice outlook was a mean value from ensemble runs of 10 radom initial conditions.	AMSR2	SMOS, CryoSət-2