Name of contributor or name of contributing organization:

RASM@NPS (Maslowski et al.)

Is this contribution from a person or group not affiliated with a research organization?

RASM@NPS (Maslowski et al.)

Do you want your June contribution to automatically be included in subsequent reports? (If yes, you may still update your contribution via the submission form.)

[Do you want your contribution for this month to automatically be included in subsequent reports?]

What is the type of your Outlook projection?

Dynamic Model

Starting in 2017 we are accepting both pan-Arctic and pan-Antarctic sea ice extent (either one or both) of the September monthly mean. As in 2016, we are also collecting Alaskan regional sea ice extent. To be consistent with the validating sea ice extent index from NSIDC, if possible, please first compute the average sea ice concentration for the month and then compute the extent as the sum of cell areas > 15%.

a) Pan-Arctic September extent prediction in million square kilometers.

4.685
b) same as in (a) but for pan-Antarctic. If your method differs substantially from that for the Arctic, please enter it as a separate submission.

c) same as in (b) but for the Alaskan region. Please also tell us maximum possible extent if every ocean cell in your region were ice covered.

0.316

"Executive summary" of your Outlook contribution (using 300 words or less) describe how and why your contribution was formulated. To the extent possible, use non-technical language.

The Arctic sea ice extent September 2023 minimum is predicted to roughly continue the September declining trend (of 0.498x10^6 km^2/decade) based on the RASM hindcast simulation (2000-2022). The difference between the 31-member ensemble mean September sea ice extent prediction and the extrapolation of the 2000-2022 linear trend into 2023 is 0.137x10^6 km^2. Compared to the RASM September 2022 sea ice extent minimum (4.829x10^6 km^2) from the hindcast, the ensemble mean forecast for 2023 minimum is lower by 0.144x10^6 km^2, indicating a slight decline. According to the RASM ensemble mean predicted September sea ice thickness distribution, the majority of surviving ice thickness ranges between 0.5 m and 2.0 m with the thickest sea ice north of the Canadian Archipelago and Greenland.

Brief explanation of Outlook method (using 300 words or less).

We used RASM2_1_00, which is a recent version of the limited-area, fully coupled climate model consisting of the Weather Research and Forecasting (WRF), Parallel Ocean Program (POP), Sea Ice Model (CICE), Variable Infiltration Capacity (VIC) land hydrology, and routing scheme (RVIC) model components (Maslowski et al. 2012; Roberts et al. 2015; DuVivier et al. 2015; Hamman et al. 2016, 2017; Cassano et al. 2017). The model is forced with CFSR/CFSv2 reanalysis output for RASM-WRF lateral boundary conditions and for nudging winds and temperature starting above 500 mb for September 1979-May 2023. For ensemble simulations, RASM is used for dynamic down-scaling of the global NOAA/NCEP CFSv2 7-month forecasts. Each of the 31 ensemble members ran forward for 7 months using outputs from CFSv2 forecasts. The CFSv2 forcing (https://www.ncei.noaa.gov/data/climate-forecast-system/access/operational-9-month-forecast/) streams used for the ensemble members were initialized every day at 00:00 from 1 to 31 May
and used for RASM forcing at 00:00 on 1 June 2023 and onward until the end of November 2023.

Tell us the dataset used for your initial Sea Ice Concentration (SIC).

The June initial conditions for the fully-coupled RASM ensemble forecast were derived from a hindcast forced with CFSR-CFSv2 reanalysis from September 1979 to May 2023. Hence, they are internally consistent across all the model components. Neither data assimilation nor bias correction were used.

Tell us the dataset used for your initial Sea Ice Thickness (SIT) used. Include name and date.

See the above.

If you use a dynamic model, please specify the name of the model as a whole and each component including version numbers and how the component is initialized:

The version of Regional Arctic System Model (RASM v2_1_00) used for this contribution consists of the following components:

Ocean: POP2.1
Atmosphere: WRF3.7.1
Sea-ice: CICE 5.1.2
Land hydrology: VIC 4.0.6
River streamflow routing: RVIC 1.0.0
Flux Coupler: CPL 7

If available from your method.
a) Uncertainty/probability estimates:

Median

4.696

Lower error bound

4.047
5.458

Standard Deviation

0.34

b) Brief explanation/assessment of basis for the uncertainty estimate (1-2 sentences).

The uncertainty of pan-Arctic September sea ice extent was estimated from the 31 ensemble members: see also Fig.4 in the supplementary material.

c) Brief description of any post-processing you have done (1-2 sentences).

Daily mean sea ice with concentration \leq15% and thickness \leq 20 cm was excluded in the estimates of September sea ice extent.