Sea Ice Outlook

2023 June Report Individual Outlook

Name of contributor or name of contributing organization:

CPOM

Is this contribution from a person or group not affiliated with a research organization?

Name and organization for all contributors. Indicate primary contact and total number of people who may have contributed to your Outlook, even if not included on the author list.

CPOM

Do you want your June contribution to automatically be included in subsequent reports? (If yes, you may still update your contribution via the submission form.)

[Do you want your contribution for this month to automatically be included in subsequent reports?]

What is the type of your Outlook projection?

Statistical/ML

Starting in 2017 we are accepting both pan-Arctic and pan-Antarctic sea ice extent (either one or both) of the September monthly mean. As in 2016, we are also collecting Alaskan regional sea ice extent. To be consistent with the validating sea ice extent index from NSIDC, if possible, please first compute the average sea ice concentration for the month and then compute the extent as the sum of cell areas > 15%.

a) Pan-Arctic September extent prediction in million square kilometers.

4.2

- b) same as in (a) but for pan-Antarctic. If your method differs substantially from that for the Arctic, please enter it as a separate submission.
- c) same as in (b) but for the Alaskan region. Please also tell us maximum possible extent if every ocean cell in your region were ice covered.

"Executive summary" of your Outlook contribution (using 300 words or less) describe how and why your contribution was formulated. To the extent possible, use non-technical language.

We predict the September ice extent 2023 to be 4.2 (3.8-4.7) million km2. This is very close to the trend line. While melt pond fraction is lower than average in the Arctic basin due to colder conditions, melt pond fractions are higher in the Kara Sea.

Brief explanation of Outlook method (using 300 words or less).

This is a statistical prediction based on the correlation between the ice area covered by melt-ponds in May and ice extent in September. The melt pond area is derived from a simulation with the sea ice model CICE in which we incorporated a physically based melt-pond model 1. See our publication in Nature Climate Change

http://www.nature.com/nclimate/journal/v4/n5/full/nclimate2203.html for details2. References:

- 1. Flocco, D., Schröder, D., Feltham, D. L. & Hunke, E. C., 2012: Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J. Geophys. Res. 117, C09032.
- 2. Schröder D., D. L. Feltham, D. Flocco, M. Tsamados, 2014: September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nature Clim. Change 4, 353-357, DOI: 10.1038/NCLIMATE2203.

Tell us the dataset used for your initial Sea Ice Concentration (SIC).

n/a

Tell us the dataset used for your initial Sea Ice Thickness (SIT) used. Include name and date.

component including version numbers and how the component is initialized:
If available from your method. a) Uncertainty/probability estimates:
Median
Lower error bound
Lower error bound
Standard Deviation
0.5
b) Brief explanation/assessment of basis for the uncertainty estimate (1-2 sentences).
Mean forecast error based on forecasts for the years 1984 to 2022.
c) Brief description of any post-processing you have done (1-2 sentences).
See references above.