Name of contributor or name of contributing organization:

Lamont (Yuan and Li)

Is this contribution from a person or group not affiliated with a research organization?

Name and organization for all contributors. Indicate primary contact and total number of people who may have contributed to your Outlook, even if not included on the author list.

Lamont (Yuan and Li)

Do you want your June contribution to automatically be included in subsequent reports? (If yes, you may still update your contribution via the submission form.)

[Do you want your contribution for this month to automatically be included in subsequent reports?]

What is the type of your Outlook projection?

Statistical/ML

Starting in 2017 we are accepting both pan-Arctic and pan-Antarctic sea ice extent (either one or both) of the September monthly mean. As in 2016, we are also collecting Alaskan regional sea ice extent. To be consistent with the validating sea ice extent index from NSIDC, if possible, please first compute the average sea ice concentration for the month and then compute the extent as the sum of cell areas > 15%.

a) Pan-Arctic September extent prediction in million square kilometers.

4.49
b) same as in (a) but for pan-Antarctic. If your method differs substantially from that for the Arctic, please enter it as a separate submission.

18.12

c) same as in (b) but for the Alaskan region. Please also tell us maximum possible extent if every ocean cell in your region were ice covered.

0.49

"Executive summary" of your Outlook contribution (using 300 words or less) describe how and why your contribution was formulated. To the extent possible, use non-technical language.

A linear Markov model is used to predict monthly Arctic sea ice concentration (SIC) at all grid points in the pan-Arctic region (Yuan et al., 2016). The model has been retrained this month using SIC, atmosphere variables and SST from 1979 to 2021. It is capable of capturing the co-variability in the ocean-sea ice-atmosphere system. The September pan-Arctic sea ice extent (SIE) is calculated from predicted SIC. The model predicts negative SIC anomalies throughout the pan-Arctic region. At the one-month lead, the September mean pan-Arctic SIE is predicted to be 4.49 million square kilometers (mskm) with an RMSE of 0.34 mskm. The RMSE is estimated based on our model cross-validation experiments from 1979-2021. The Alaskan regional SIE is predicted to be 0.49 mskm with RMSE of 0.13 mskm. A similar statistical model was also developed to predict the SIE in the Antarctic (Chen and Yuan, 2004). The September mean pan Antarctic SIE is predicted to be 18.12 mskm, lower than September 2021, with an RMSE of 0.67 mskm based on model cross-validation experiments.

Brief explanation of Outlook method (using 300 words or less).

The model employs six variables: NASA Team sea ice concentration, sea surface temperature (ERSST), surface air temperature, GH300, vector winds at GH300 (NCEP/NCAR reanalysis) from 1979 to 2021. It is built in multi-variate EOF space. The model utilizes the first 11 mEOF modes and uses a Markov process to predict these principal components forward one month at a time. The pan-Arctic sea ice extent forecast is calculated by summarizing all cell areas where predicted sea ice concentration exceeds 15%.

Tell us the dataset used for your initial Sea Ice Concentration (SIC).
Tell us the dataset used for your initial Sea Ice Thickness (SIT) used. Include name and date.

N/A

If you use a dynamic model, please specify the name of the model as a whole and each component including version numbers and how the component is initialized:

If available from your method.

a) Uncertainty/probability estimates:

Median

Lower error bound
4.15

Lower error bound
4.83

Standard Deviation

b) Brief explanation/assessment of basis for the uncertainty estimate (1-2 sentences).

The SIE uncertainty measured by RMSE is 0.34 million square kilometers for the one-month lead prediction of the pan-Arctic sea ice extent.

c) Brief description of any post-processing you have done (1-2 sentences).
First, a constant bias correction was applied to Arctic SIC prediction at each grid point. These biases were estimated based on the take-one-year-out cross-validated predictions for 1979-2021. Then a constant error prediction derived from the cross-validation experiments from 1979 to 2021 was corrected from the September SIE prediction. Finally, the model uses a lower resolution for sea ice concentration data (2-degree longitude x 0.5-degree latitude), introducing a 0.10 million square kilometers bias compared to 25kmx25km original satellite data. This resolution bias is corrected in the final Arctic SIE prediction.