1. *Contributor Name(s)/Group

Mr. Persistence (Andrew Slater)

2. *Type of Outlook projection

___model _X__statistical ___heuristic

If you use a model, please specify:
Model Name Multi-Persistence
Components of the model: Atmosphere___, Ocean___, Ice___, Land___, Coupler___
For non-coupled model: Ice _X___, Ocean___, Forcing___

3. *September monthly average projection (in million square kilometers)

4.86 or 4.86 or 4.48 x 10^6 km^2

4. *Short explanation of Outlook method (1-3 sentences)

Persistence can be computed in several ways. I have looked out to Sept. for the sake of comparison and as a very basic benchmark.

1) Daily anomaly persistence at 54 days lead time (so that I can go all the way to Sep 30th), then compute mean for Sept = 4.86

2) Persist the absolute anomaly from July to Sept (using NSIDC monthly value, not mean of daily). Sept = 4.86

3) Persist the standard normal deviate from July to Sept (using NSIDC monthly). Labeled as "Variance Persistence". Sept = 4.48

Remarkably, the daily and monthly absolute persistence results are the same! There is better agreement among the various method this month, particularly compared to the June prediction.
5. Projection uncertainty/probability estimate (only required if available with the method you are using)

At 54 days, persistence is not a bad predictor. It consistently does better than some more sophisticated models.

7. * “Executive summary” about your Outlook contribution
1-3 sentences, to be used in Outlook summary: say in a few sentences what your Outlook contribution is and why. To the extent possible, use non-technical language.

Three different types of persistence forecasting at 54-day or 2 month lead time. The methods contain quite reasonable skill at this timescale. Both monthly and daily absolute anomaly persistence give 4.86×10^6 km2.