Submission Guidelines:
The submission deadline is 6:00 pm (AKDT) Monday, 13 June 2016 (firm) and all submissions should be sent to sio2016@arcus.org. Contributions received after the deadline will be posted to the website but not incorporated into the Outlook report or discussion.

Questions may be directed to Betsy Turner-Bogren, ARCUS (betsy@arcus.org)

Core Requirements for Pan-Arctic Contributions:
* REQUIRED

1. Todd Arbetter\(^1\), Mark Potts\(^2\)

1b. \(^1\) Institute at Brown for Environment & Society, Brown University, Providence, Rhode Island
 \(^2\) Redline Solutions LLC, Rockville, Maryland
 (total contributors: 2)

2. * Contributions submitted by a person or group not affiliated with a research organization, please self-identify here:
 _______ Yes, this contribution is from “Citizen Scientists.”

3. * Do you want your contribution to be included in subsequent reports in the 2016 season?
 _______ Yes, use this contribution for all of the 2016 SIO reports (this contribution will be superseded if you submit a later one).
 ___X____ No, I/we plan to submit separate contributions for subsequent reports.
 _______ No, I only want to participate this time.

4. This method is based on the Arctic Regional Ice Forecast System (Drobot et al., International Journal of Climatology, 2009) with additional modifications done by Arbetter at National Ice Center; followed by rewriting and parallelizing the code done by Potts. It uses sea ice, sea level pressure (NCEP), 2-meter surface air temperature (NCEP), and cumulative freezing degree days. 10 years of data are used to establish correlations between conditions at the start week and forecast week. Forecasts are done for 12-16 weeks in the future to cover melt and refreezing.

5. *Type of Outlook method:
 ___dynamic model ___X_statistical ___heuristic ___mixed or other (specify)

6. NASA GSFC Bootstrap, 2005-2016 (acquired from NSIDC.org)

7. n/a
8. n/a

9. 4.31 million km2 (based on July 10 data)

10. week of September 14

11. Multilinear Regression/Correlation of forecast conditions using 10 years history of start week and forecast week. Forecasts for all weeks in August/September/October are conducted to establish a time series and the lowest sea ice extent is identified.

12. a) Uncertainty: Forecasts to date range between 3.52 million km2 and 4.47 million km2. The mean of all 10 forecasts is 4.12 million km2. The trend is toward a higher September minimum ice extent (using the most recent initial conditions).

Forecast results from the NIC-ARIFS model from week 30 (July 25) through week 40 (October 3), 2016. Cyan is the most recent forecast (4.31 million km2, September 14), based on July 4 conditions; green is the forecast from the previous week (June 27: 4.47 million km2, September 21). The highest projected minimum to date (4.47 million km2, September 7) occurred using week 20 (May 16), while the lowest projected minimum occurred (3.52 million km2, September 28) using week 22 (May 30).
Projected sea ice extent for week of September 14, 2016, from the NIC-ARIFS multilinear regression model, based on July 10 data.