
SEA ICE PREDICTION NETWORK (SIPN)

Template for Pan-Arctic Sea Ice Outlook Core Contributions June 2016 Report (Using May Data)

1. *Contributor Name(s)/Group
Mr. Persistence (Andrew Slater)
2. *Type of Outlook projectionmodel _Xstatisticalheuristic
If you use a model, please specify: Model Name Multi-Persistence Components of the model: Atmosphere, Ocean, Ice, Land, Coupler For non-coupled model: Ice _X_, Ocean, Forcing
3. *September monthly average projection (in million square kilometers)
4.88 or 4.96 or 3.03 x 10 ⁶ km ²
4. *Short explanation of Outlook method (1-3 sentences)
Persistence can be computed in several ways. I have looked out to Sept. for the sake of comparison and as a very basic benchmark.
1) Daily anomaly persistence at 112 days lead time (so that I can go all the way to Sep 30th), then compute mean for Sept = 4.88
2) Persist the absolute anomaly from May to Sept (using NSIDC monthly value, not mean of daily). Sept $= 4.96$
3) Persist the standard normal deviate from May to Sept (using NSIDC monthly). Labeled as "Variance Persistence". Sept = 3.03
None of these methods have true skill at this long lead time. For April-June the daily persistence at 112-day lead time looks like a nice forecast (and is giving better results than a 50-day lead time), however, this is pure coincidence.

These methods are different from the "damped persistence" that Ed Blanchard-Wriggleswoth calculates (as I have no damping mechanism built in) I/we should throw that one in there as well.

(Note: this plot includes a longer smoothing window than my operational 50-day forecast and the observed data sets are different)

5. Projection uncertainty/probability estimate (only required if available with the method you are using)

Large error!

7. * "Executive summary" about your Outlook contribution

1-3 sentences, to be used in Outlook summary: say in a few sentences what your Outlook contribution is and why. To the extent possible, use non-technical language.

Three different types of persistence forecasting at 112-day or 4 month lead time. The methods contain no real skill at this timescale.