Collaborative Research: Arctic Surface Air Temperatures (SAT): Analysis and Reconstruction of Integrated Data Sets for Arctic System Science

PIs: Ignatius G. Rigor, Axel Schweiger, & Harry Stern Polar Science Center, APL/UW

> Collaborators: Jeff Key, NOAA/NESDIS Joey Comiso, NASA/GSFC

Study of Arctic System Science (SASS) Investigator Meeting, October 2-4, 2007

Outline of Work

Reconcile differences in SAT data sets during data-rich period 1979 -2006 and produce "best estimate" (ARCSS-SAT)

Reconstruct SAT during 1901-1978 based on EOFs of ARCSS-SAT and available station data (ARCSS-SAT-REC) (a) Observed January 1990 (def statume 507)) Reconstruction - Jan 1990 (add on 85 January 507)) (add on 85 January 807) (add o

Blend with global SAT of *Jones* (ARCSS-SAT-REC-GLOBAL)

Science Questions

What are the links between SAT and sea ice extent?

Are changes in SAT related to large-scale modes of variability (e.g. AO) over the longer record?

Callezor Callez

Do global climate models get Arctic SAT variability right?

SAT Data Sets 1982-2001

Tair NCEP_R1 1982-2001 : Jan

225 230 235 240 245 250 255 280 265 270 275 280 285 290

NCEP R1 NCEP R2 ERA-40 IABP TOVS PP APP-X AVHRR-C

Mean SATs agree reasonably well

20-year mean January SATs

225 230 235 240 245 250 255 260 265 270 275 280 285 290

Mean January Difference from NCEP R1

DeltaT COMISO- NCEP(R1) 1982-2001 : Jan

-8.0-6.8-5.5-4.3-3.1-1.8-0.6 0.6 1.8 3.1 4.3 5.5 6.8 8.0

DeltaT APPX- NCEP(R1) 1982-2001 : Jan

-8.0-6.8-5.5-4.3-3.1-1.8-0.6 0.6 1.8 3.1 4.3 5.5 6.8 8.0

DeltaT NCEP_R2- NCEP(R1) 1982-2001 : Jan

-8.0-6.8-6.5-4.3-3.1-1.8-0.60.6 1.8 3.1 4.3 5.5 6.8 8.0 DeltaT IABP— NCEP(R1)

1982–2001 : Jan

-8.0-6.8-5.5-4.3-3.1-1.8-0.6 0.6 1.8 3.1 4.3 5.5 6.8 8.0

Reconciliation Steps

- •Quality-check *in-situ* buoy and land station data
- •Correct biases in reanalysis and satellite SAT fields
- •Select bias-corrected background field (e.g. NCEP R1)
- •Compute anomalies from background for all SATs
- •Estimate error covariances
- •Apply optimal interpolation to get "best" anomaly fields
- •Verify error estimates against actual errors (OI data)
- •Add anomalies to background to get ARCSS-SAT

Reconstruction of SAT

Compute Empirical Orthogonal Functions (EOFs) from ARCSS-SAT (1979-2006)

Represent each field of SAT during the data-sparse period as a linear combination of the EOFs, with unknown coefficients

Determine the coefficients by minimizing the discrepancy with existing station data

Assumption

Patterns of SAT variability during the early period can be adequately represented in terms of patterns present during the later period

RED DOTS: "super stations" reporting since 1901

EOF Reconstruction of January 1990 SAT Field based on stations reporting in 1950

(a) Observed - January 1990 (454 Stations > 50°N)

(b) Reconstruction - Jan 1990 (Based on 83 Stations established by 1950)

Data Products

ARCSS-SAT-REC

ARCSS-SAT

Reconstructed SAT for 1901-present 100-km EASE grid / monthly / 50°N–90°N Status: preliminary version / not released yet

ARCSS-SAT-REC-GLOBAL Global SAT for 1901-present Blend Jones et al. with **ARCSS-SAT-REC** 5° lat-lon grid / monthly

Potential Linkages to SASS I Projects

SAT

SAT

- A Heat Budget Analysis of the Arctic Climate System
 as validation data set, 1979-2006
- Sunlight and the Arctic Atmosphere-Ice-Ocean System as input or validation data set
- Synthesis of Modes of Ocean-Ice-Atmosphere Covariability in the Arctic System from Multivariate Century-Scale Observations
 Share pre-1979 SAT data for assimilation or validation
- Synthesis of Arctic System Carbon Cycle Research Through Model-Data Fusion Studies Using Atmospheric Inversion and Process-Based Approaches Compare changes in CO₂ fluxes to changes in SAT
- Greening of the Arctic-Synthesis and Models to Examine the Effects of Climate, Sea-Ice, and Terrain on Circumpolar Vegetation Changes
 Changes in vegetation are intimately linked to changes in land SAT.
 Compare SAT data sets; provide pre-1979 SAT
- •A Synthesis of Rapid Meltwater and Ice Discharge Changes: Large Forcings from the Ice with Impacts on Global Sea Level and North Atlantic Freshwater Budgets Share coastal weather station data back to 1901
- Humans and Hydrology at High Latitudes
 Link between SAT and hydrological changes

Potential linkages of SASS projects

Potential Linkages to SASS II Projects

Complete fields of Arctic SAT are likely to be useful to many of these projects

- The Roles of Clouds and their Accomplices in Modulating the Trajectory of the Arctic System
- Toward Reanalysis of the Arctic Climate System Sea Ice and Ocean Reconstruction with Data Assimilation
- Climate Response to Future Changes in Arctic Snow Cover and Sea Ice: A New Perspective from the High-Resolution NCAR CCSM3
- The White Arctic: A Snow-Impacts Synthesis for the Terrestrial Arctic
- Understanding Change in the Climate and Hydrology of the Arctic Land Region: Synthesizing the Results of the ARCSS Fresh Water Initiative Projects
- The Impact of Changes in Arctic Sea Ice on the Marine Planktonic Ecosystem -Synthesis and Modeling of Retrospective and Future Conditions
- Producing an Updated Synthesis of the Arctic's Marine Primary Production Regime and Its Controls
- Synthesis of Sea Ice, Climate, and Human Systems in the Arctic and Subarctic (SYNICE)

