Humans and Hydrology at High Latitudes (H³L)

University of New Hampshire

Richard B. Lammers Lawrence C. Hamilton Alexander I. Shiklomanov Charles J. Vörösmarty

University of Alaska, Fairbanks

Dan White Amy Tidwell

University of Alaska, Anchorage Lilian Alessa Andrew Kliskey

Sponsored by NSF - Synthesis of Arctic System Science

Pan-Arctic Political Hierarchy National Level Sub-National Units Republic Oblast Krais Autonomous Oblast Autonomous Districts Federal City Level includes US States, Canadian Provinces, Russian Oblasts Administration Sub-Divisions Counties shaded by Native Population

Level includes US Counties, Canadian Counties, Census Divisions, Regions, etc, Russian Raions

H³L Summary

Intersection of hydrology and humans

Interested to know current state of water resources across the pan-Arctic

Understand how to link local and macro scales

Extend analysis into the future

Identify vulnerable regions

Pan-Arctic Drainage

South to $45^{\circ}N$

Calculating Water Use

Level I

Lumped values when data is limited

(Mongolia, China, Kazakhstan)

CALCULATION OF KEY WATER INDICATORS

- $DIA_n =$ domestic, industrial, agricultural water use (km³ yr⁻¹) in cell *n*
- $\sum DIA_n = DIA$ in cell *n* plus all upstream cells (km³ yr⁻¹)
 - $= \sum_{i=1}^{n} DIA_i$
 - R_n = locally-generated runoff (mm/yr)
 - $A_n = \text{ area of cell } n \text{ (km}^2)$
 - $Q_{Ln} = 10^6 * R_n * A_n = \text{locally generated discharge}$ (km³ yr⁻¹)
 - $Q_{Cn} = \sum_{i=1}^{n} Q_{L_i}$ = river corridor discharge (km³ yr⁻¹)
- $DIA_n/Q_{Cn} = local relative water use (unitless)$
- $\sum DIA_n/Q_{Cn}$ = water reuse index (unitless) Key (cell n)
 - n = position of cell in river network = total number of upstream cells plus cell in question

Arctic Water Resources Vulnerability Index (AWRVI)

$AWRVI = AWRVI_{physical} + AWRVI_{social}$

Physical sub-index:

 $\mathbf{AWRVI}_{physical} = AWRVI_{natural_supply} + AWRVI_{municipal_supply} + AWRVI_{water_quality}$ $+ AWRVI_{permafrost} + AWRVI_{subsistence_habitat}$

Constituent sub-indices:		
AWRVI _{natural_supply}	= f (precipitation, surface water, river runoff)	←
AWRVI _{municipal_supply}	= f (yield, source diversity, treatment technology,	
	hydraulic gradient, permafrost risk)	
AWRVI _{water quality}	= f (upstream modification, water quality testing)	←
AWRVI _{permafrost}	= f (permafrost distribution)	←
AWRVIsubsistence habitat	= f (aquatic habitat, terrestrial habitat)	

Social sub-index:

 $\mathbf{AWRVI}_{social} = AWRVI_{knowledge} + AWRVI_{economic} + AWRVI_{information_capacity} + AWRVI_{sensitivity}$

:
= f (traditional knowledge, Western knowledge,
residency time)
= f (community wealth)
= f (land tenure)
= f (subsistence values, social network diversity,
perception of change)

Opportunities to downscale from future climate change scenarios and macro-scale georeferenced data sets to asses the resilience of communities to change.

- AET = Actual evapotranspiration
- PET = Potential evapotranspiration

Unifying framework for data

ArcticRIMS - http://RIMS.unh.edu

Now has political hierarchy.