What are Acoustic Vector Sensors (AVS)?

- AVS are a type of sensor platform which measure acoustic pressure and particle velocity simultaneously. This provides a method to determine the instantaneous magnitude and direction of an acoustic sound source.

Why use AVS?

- Detect and localize acoustic sources remotely
- Natural or anthropogenic
- Small package (sans large sensor arrays)
- Easy implementation and deployment
- Wide range of applications
- Low cost

AVS Sensing Modality

AVS rely on measurement of sound intensity,

\[I = pu \]

which is the product of acoustic pressure (p) and particle velocity (u).

In practice, intensity is estimated as one of the following depending on AVS transducer types:

- \[I_x(\omega) = \text{Re}[G_{uxp}(\omega)] \] (pressure – particle velocity)
- \[I_y(\omega) = \text{Re}[G_{uyp}(\omega)/j\omega] \] (pressure – particle velocity)
- \[I_z(\omega) = \frac{1}{\rho_0\omega^2}\text{Im}[G_{upu}(\omega)] \] (pressure – pressure)

The azimuth (\(\theta \)) and elevation (\(\phi \)) directions of arrival (DOA) to an acoustic source are estimated as,

\[
\theta_{VS} = \tan^{-1}\frac{I_{\text{West}}}{I_{\text{North}}}
\]

\[
\phi_{VS} = \tan^{-1}\frac{I_{up}}{I_{\text{North}}^2 + I_{\text{West}}^2}
\]

where,

\[
\begin{bmatrix}
I_{\text{North}} \\
I_{\text{West}} \\
I_{up}
\end{bmatrix} = Q
\begin{bmatrix}
I_x \\
I_y \\
I_z
\end{bmatrix}.
\]

The transformation matrix (\(Q \)) translates local coordinates to global coordinates.

Sensing Mechanisms:

- pressure-particle velocity (\(pu \))
- pressure-particle acceleration (\(pa \))
- pressure-pressure (\(pp \))
- particle velocity-particle velocity (\(uu \))

Sensing Mediums:

- Underwater
- In-air
- Surface mount

Detection Statistics with AVS

ROC curves for detection of sources vs. ambient background indicate high confidence of detection when using AVS.

Multiple AVS Sensor Types

Localizing Natural Sounds with AVS

Underwater AVS data for stationary underwater sound source high-frequency pings. Mean azimuth and elevation angles are shown with dashed lines.

Localizing Anthropogenic Sources with AVS

Vehicle ground truth position measured by GPS onboard during 120-second data collect. Underwater AVS measurements made at sites for tracking snowmobile. In-air AVS measurements made at sites for tracking utility vehicle. Mean DOA estimates from AVS compared to ground truth azimuth. Underwater AVS shown to be feasible to detect, localize, and track on-ice anthropogenic sources. In-air AVS shown to be feasible to detect, localize, and track ground vehicles.