

## UAVs making atmospheric measurements: water vapor isotopes above the Greenland Ice Sheet



Bruce Vaughn<sup>1</sup>, Kevin Rozmiarek<sup>1</sup>, Valerie Morris<sup>1</sup>, Hans Christian Steen-Larsen<sup>2</sup>, and Tyler Jones<sup>1</sup>

<sup>1</sup> INSTAAR- University of Colorado, Boulder; <sup>2</sup> University of Bergen, Norway



# 🚔 A R C U S-

#### ARCTIC RESEARCH CONSORTIUM OF THE UNITED STATES



Polar Technology Conference, March 2020





# EGRIP Camp 75.6°N, 36.0°W









Willi Dansgaard 1923-2011



#### STABLE ISOTOPES IN PRECIPITATION



From W. Dansgaard, Tellus November 1964



Closing the Water Vapor Exchange Budget between the Ice Sheets and Free Atmosphere



The mean diurnal cycle on days with clear sky and calm weather. Stacked based on diurnal cycles between Julian days 180 and 190.

## Water **vapor** isotopes challenge assumptions



(Steen-Larsen et al. 2014)

Ice core isotopes are not only governed by precipitation isotopes



This challenges 50 years of assumptions

What controls the water vapor isotope flux between the snowpack and the atmosphere and how important is it?

## Why Measure Water Vapor Isotopes?

- Water vapor is the strongest natural greenhouse gas and transports large amounts of energy through latent heat.
- Important for: radiative transfer, cloud formation, weather and climate
- Water vapor deposition and sublimation are largely unconstrained terms in surface mass balance of the Greenland ice sheet.
- Uncertainty remains in water vapor in the atmospheric boundary layer above the ice sheet, and how much is exchanged with the free troposphere.
- Ground truth is needed for satellite data and atmospheric models
- Better understanding of the transfer function of climate from the atmosphere to the ice core isotope record.

#### Surface Science at EGRIP (East GReenland Icesheet Project)



#### **GRACE Observations of Greenland Ice Mass Changes**







#### Mass balance changes from surface melt and ice berg calving





MODIS



<sup>(</sup>From Hall et al. 2018)



## The 2019 Melt year in Greenland

Data from Danish Meteorological Institute polarportal.dk/en/greenland/surfac e-conditions/

Model estimates are from DMI's regional climate model HIRHAM5



## Water vapor



Examples of water vapor maps of the Greenland Ice Sheet derived from the Collection 6 MOD05 standard MODIS product, for June through September 2015 (*from Hall, et al. 2018*).

Note: The water vapor below clouds is not seen by MODIS near-IR channels; this could result in biases when using a time series of WV data.

## Greenland Average daily vapor flux estimates



Estimates of loss due to sublimation range from 6% to 18% of (39 to 120 gigatonnes/year (*Boisvert et al. 2016: 6%;* Lenarts et al. 2012: 12%; Box and Steffen, 2001:18%).





| Flask #          | Location/Alt     | PPm             | dD ‰           | d180 ‰ | ± ‰  | Pair Differences |       |        |
|------------------|------------------|-----------------|----------------|--------|------|------------------|-------|--------|
|                  |                  |                 |                |        |      | PPm              | dD ‰  | d180 ‰ |
| 1                | 68               | 4861            | -276.6         | -35.65 | 0.16 |                  |       |        |
| 2                | 68               | 4847            | -276.2         | -35.62 | 0.11 | 14               | -0.40 | 0.03   |
| 3                | 131              | 4954            | -269.2         | -34.57 | 0.1  |                  |       |        |
| 4                | 131              | 4989            | -268.9         | -34.37 | 0.1  | -35              | -0.30 | 0.20   |
| 5                | 0                | 4377            | -287.4         | -37.25 | 0.19 |                  |       |        |
| Outside Prior    | 0                | 4496            | -291.1         | -37.41 | 0.15 | -119             | 3.70  | 0.16   |
| (~ 30 minutes be | efore behind the | e tent - so dif | ferent conditi | ons?)  |      | 1                |       |        |

#### June 7, 2018 flight with samples taken in pairs













## Field Season 2019 Specific Humidity



#### Inlet system to introduce water standard and samples to CRDS System





https://doi.org/10.5194/amt-2019-240 Preprint. Discussion started: 19 June 2019 © Author(s) 2019. CC BY 4.0 License.



Atmos. Meas. Tech., 8, 1799–1818, 2015 www.atmos-meas-tech.net/8/1799/2015/ doi:10.5194/amt-8-1799-2015 © Author(3) 2015. CC Attribution 3.0 License



#### First data set of H<sub>2</sub>O/HDO columns from TROPOMI

Andreas Schneider<sup>1</sup>, Tobias Borsdorff<sup>1</sup>, Joost aan de Brugh<sup>1</sup>, Franziska Aemisegger<sup>2</sup>, Dietrich G. Feist<sup>3,4</sup>, Rigel Kivi<sup>5</sup>, Frank Hase<sup>6</sup>, Matthias Schneider<sup>6</sup>, and Jochen Landgraf<sup>1</sup>

<sup>1</sup>Earth science group, SRON Netherlands Institute for Space Research, Utrecht, the Netherlands

<sup>2</sup>Atmospheric Dynamics group, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland <sup>3</sup>Deutsches Zentrum f
ür Luft- und Raumfahrt, Institut f
ür Physik der Atmosphäre, Oberpfaffenhofen, Germany

<sup>4</sup>Max Planck Institute for Biogeochemistry, Jena, Germany

<sup>5</sup>Finnish Meteorological Institute, Sodankylä, Finland

<sup>6</sup>Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology, Karlsruhe, Germany

Correspondence: Andreas Schneider (a.schneider@sron.nl)



# Validation of SCIAMACHY HDO/H2O measurements using the TCCON and NDACC-MUSICA networks

R. A. Scheepmaker<sup>1</sup>, C. Frankenberg<sup>2</sup>, N. M. Deutscher<sup>3,4</sup>, M. Schneider<sup>5,6</sup>, S. Barthlott<sup>5</sup>, T. Blumenstock<sup>5</sup>, O. E. Garcia<sup>6</sup>, F. Hase<sup>5</sup>, N. Jones<sup>4</sup>, E. Mahieu<sup>7</sup>, J. Notholt<sup>3</sup>, V. Velazco<sup>4</sup>, J. Landgraf<sup>1</sup>, and I. Aben<sup>1</sup>

<sup>1</sup>SRON Netherlands Institute for Space Research, Utrecht, the Netherlands

<sup>2</sup>Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA, USA

<sup>3</sup>Institute for Environmental Physics, University of Bremen, Bremen, Germany

<sup>4</sup>Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia

<sup>5</sup>Karisruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany <sup>6</sup>Izaña Atmospheric Research Centre (IARC), Agencia Estatal de Meteorología (AEMET), Santa Cruz de Tenerife, Spain <sup>7</sup>Institute of Astrophysics and Geophysics, University of Liège, Liège, Belgum

Correspondence to: R. A. Scheepmaker (r.a.scheepmaker@sron.nl)

Received: 20 October 2014 - Published in Atmos. Meas. Tech. Discuss.: 27 November 2014 Revised: 26 March 2015 - Accepted: 27 March 2015 - Published: 21 April 2015

#### Total Carbon Column Observing Network (TCCON)



Biases remain for independent measurements of water vapor and isotopes



TROPOspheric Monitoring Instrument (TROPOMI) on the Copernicus Sentinel-5 Precursor satellite. launched in 2017, for a nominal lifetime of 7 years



# Handheld Prototype





#### **Future Plans**

- Maximize data density in space and time
- Develop potential for sampling other gases
- Collaborate with other groups to co-measure and validate other systems





Lessons Learned

- Keep batteries warm
- Avoid dependence on a compass
- Always plan for the unexpected

Case STX 485 Quadtrac pulls the Dome on skis

14 meters tall, 47 tons Towed ~ 500 km across Greenland



Sharpeye SxV High Performance Xband ground surveillance radar system

- Up to 80 W radiated power
- Weight: 20 Kg
- Power: 150 watts 9- 32 volts DC
- Range: 5 Km person, 15 km vehicle



## https://seec.colorado.edu/act/

