Dramatic weakening of the Pacific water boundary current in the Beaufort Sea during the first decade of the 2000s

R.S. Pickart, E.T. Brugler, W.B. Corlett
G.W.K. Moore
Woods Hole Oceanographic Institution
University of Toronto
University of Alaska

Outline

I. Overview of the circulation in Chukchi/Beaufort Seas
II. Seasonal to interannual variability of the boundary current
III. Causes and ramifications of the pronounced changes

Pacific water inflow to the Arctic

Pacific water inflow to the Arctic

Pacific water inflow to the Arctic

Pacific water Bauifitanater

 boundary cyror Beaufort shelfbreak jet)
viewer is looking west

The predominant wind direction in the Beaufort Sea is easterly

10-m wind rose from the Met station in Pt. Barrow, AK

Pacific water

 boundary current
viewer is looking west
fall storm event

Pacific water boundary current

viewer is looking west
fall storm event

Transport of Pacific Water: 2002-3

Transport of Pacific Water: 2002-3

Transport of Pacific Water: 2002-3

Data from:

2002-2004 SBI 2005-2006 WHOI 2008-2014 AON

9 years total

Seasonal variation in transport

volume transport
heat transport

Wost of the transport of the current, and nearly all of the heat flux, occurs in the summer months

Number of upwelling events using a Pt. Barrow wind proxy

Pickart et al. (2013)

Interannual variation in transport

Interannual variation in transport

The boundary curient has dinfolshed th transport by more than 80% over the last decade, even though the Bering strait liflow has hereased by 50%

Interannual variation in transport

Transport during summer (JJA)

Interannual variation in transport

Transport during summer (JJA)

Enhanced summertime easterly winds are the cause of the transport drop

Two atmospheric Centers of Action

Mean sea level pressure and $10-\mathrm{m}$ wind vectors from NARR, 2002-2011
$\mathrm{AL}=$ Aleutian Low

Beaufort High versus Aleutian Low

Sea level pressure gradient

Beaufort High versus Aleutian Low

Sea level pressure gradient

Beaufort High versus Aleutian Low

Sea level pressure gradient

Ramifications of the reduction

 in boundary current transport
Where does the water (and heat) go?

Where does the water (and heat) go?

Average heat flux at each site for summer 2011

Where does the water (and heat) go?

Sea-ice concentration in late-September 2011

Where does the water (and heat) go?

AVHRR-AMSR

Sea-ice concentration in late-September 2011

Where does the water (and heat) go?

AVHRR-AMSR

Sea-ice concentration in late-September 2011

How does the water (and heat) leave Barrow Canyon?

Easterly wind event summer 2011
a July 10, 2011

Easterly wind event summer 2011
a July 10, 2011

b July 14,2011

Easterly wind event summer 2011
a July 10, 2011

b July 14,2011

C July 16, 2011

Easterly wind event summer 2011

b July 14,2011

C July 16,2011

d July 19, 2011

July 17, 2011

Temperature (color) overlain by salinity (contours)
viewer is looking to the west

July 17, 2011

Temperature (color) overlain by salinity (contours)

velocity (color) overlain by salinity (contours)
viewer is looking to the west

Chukchi slope sections

Corlett and Pickart (in prep)

Chukchi slope sections

Conclusions

Since the early 2000s the transport of the Pacific water boundary current has diminished by more than $\mathbf{8 0 \%}$, despite the fact that the inflow through Bering Strait has increased by 50\%

Conclusions

Since the early 2000s the transport of the Pacific water boundary current has diminished by more than $\mathbf{8 0 \%}$, despite the fact that the inflow through Bering Strait has increased by $\mathbf{5 0 \%}$

This is the result of enhanced easterly winds in summer, due to a strengthening of the Beaufort High and deepening of the Aleutian Low

Conclusions

Since the early 2000s the transport of the Pacific water boundary current has diminished by more than $\mathbf{8 0 \%}$, despite the fact that the inflow through Bering Strait has increased by $\mathbf{5 0 \%}$

This is the result of enhanced easterly winds in summer, due to a strengthening of the Beaufort High and deepening of the Aleutian Low

Consequently, warm summer water exits Barrow Canyon directly into the basin where it contributes significantly to ice melt

Conclusions

Since the early 2000s the transport of the Pacific water boundary current has diminished by more than $\mathbf{8 0 \%}$, despite the fact that the inflow through Bering Strait has increased by 50\%

This is the result of enhanced easterly winds in summer, due to a strengthening of the Beaufort High and deepening of the Aleutian Low

Consequently, warm summer water exits Barrow Canyon directly into the basin where it contributes significantly to ice melt

Is this a regime shift or an interannual oscillation?

