Interdisciplinary Observations of Air-Ocean Energy Fluxes During Arctic Freeze-Up

Ola Persson^{1,2}

Contributions from: G. Björk, B. Blomquist, I. M. Brooks, P. Guest, J. Inoue, L. Rainville, J. Sedlar, M. Shupe, S. Stammerjohn, J. Thomson, M. Tjernström

1) Surface energy fluxes key to understanding melt/freeze processes in new seasonal ice/open water regions of Arctic Ocean

- modulating processes interdisciplinary (air-ocean; air-ice; ice-ocean) & poorly understood

nces. University

- improving understanding requires simultaneous measurements of lower atmosphere (incl. clouds), upper ocean, sea ice
- 2) measurements from recent cruises in MIZ in 2014 & 2015
- SWERUS/ACSE; Jul 5 Oct 4, 2014; R/V Oden; Laptev, E Siberian Seas
- MR-14-05; Sep 1 27, 2014; R/V Mirai; Eastern Chukchi/Western Beaufort Seas
- Sea State; Oct 2 Nov 5, 2015; R/V Sikuliaq; Chukchi/Beaufort Seas

3) Melt season processes July- mid-Sep; freeze-up processes mid-Sep - early Nov

2233 UTC Sep 23 (YD266) Winds: 12.2 m/s, 208°

(1) Cooperative Institute for the Resear (2) NOAA/ESRL/PSD, Bruder, Colorad

the Research in the Ender, Colorado, USA

orado, Boulder, Colorado, USA

Atmospheric Surface Energy Flux

$$F_{atm} = SW_{net} + LW_{net} - H_{turb} = SW_d - SW_u + LW_d - LW_u - H_s - H_l$$

Transform to use ship-board measurements:

$$\mathbf{F}_{atm} = \mathbf{SW}_{d}(\mathbf{1}-\alpha) + \varepsilon \left(\mathbf{LW}_{d} - \alpha \mathbf{T}_{s}^{2}\right) - \rho_{a} \mathbf{c}_{p} \mathbf{C}_{H} \mathbf{U}(\theta_{g}, \theta_{a}) - \rho_{a} \mathbf{L}_{v} \mathbf{C}_{H} \mathbf{U}(\mathbf{q}, \mathbf{q})$$

 F_{atm} - net atmospheric energy flux at the surface; SW_{net}, LW_{net} - net SW/LW radiative fluxes; SW_d, LW_d - downwelling SW/LW fluxes, α - surface albedo; T_s - skin temperature; H_{turb}, H_s, H_I - atmospheric turbulent sensible/latent heat fluxes; ϵ = 0.985 (snow & ice); ϵ = 1.0 (ocean); C_H, C_E - turbulent transfer coefficients (function of stability)

<u>Albedo α:</u>

Characterize surface type

1 min webcam images; 5 s KT-15 $T_{\rm s};$ 1-min CT-15 $T_{\rm s}$; sea snake $T_{\rm s}$ Use previous studies (e.g., Perovich et al 2003)

Sea ice (melting or freezing)

- $\alpha_{sea ice} \sim 0.35$ (w meltponds) - 0.65 (0.55)

- $\alpha_{snow} \sim 0.75 - 0.85 (0.80)$

Open water (warming or freezing): $\alpha_{water} \sim 0.05 - 0.1$ (0.08)

Preliminary study: Bulk rather than covariance turbulent fluxes

- COARE algorithm (e.g., Fairall et al 2003) modified for sea ice (e.g., Andreas et al 2010)

Measurements for understanding

Lower tropospheric wind, temperature, humidity, cloud profiling

Rawinsondes 4X daily

Upper ocean temperature, salinity, and turbulence profiling

8-m Ocean T, S

AMSR2 Ice Concentration Evolution 2014; ACSE Leg Tracks

- Chukchi/Beaufort Sea freeze-up conditions; Oct 2 - Nov 5, 2015

- R/V Sikuliaq

AMSR2 Oct 27, 2015

Many States of Arctic Freeze-up

Freeze-up Starts Sep 15

Both ACSE (Oden) and Mirai daily mean F_{atm} become consistently negative Sep 15

ACSE YD262-271 (Sep 19-28)

Ocean freezing occurs when $T_{oxcs} = 0$ AND $F_{atm} < 0$

How Much Heat Loss Do We Need for the Observed Ice Advance?

Assume: T-profile at C3 on Oct 22 (in top 20 m) same as observed at C6 on Sep 24 Cooling top 20 m over 37 days (Sep 15 - Oct 22): ~ -84 W m⁻²

Observed Heat Loss YD258-YD270

More loss needed to reach -160 - -84 W m⁻², but minima sufficient

Minima occur when:

- a) enhanced LW_n loss (colder atm)
- b) larger H_s & H_I (colder/drier atm)
- c) SW_n small

ECMWF SLP, 10 m Winds

Synoptic Conditions During Freeze-up:

Low F_{atm}: off-ice synoptic flow

High F_{atm}: open-water synoptic flow; prefrontal storm system

Presence of Ice Accelerates Ocean Heat Loss

Sea State Bulk SEB Oct 2 – Nov 4

Sea State Modest Off-ice Wind Event, Oct 18-19Oct 17, 2331 UTCOct 19, 0413 UTC

Sea State modest off-ice wind event Oct 18-19, 2015

Time-Height Cross-Sections

Isotachs

Significant ocean heat loss (~ - 250 W m⁻²)

Conclusions:

1) Ocean cooling starts ~ Sep 15

2) Observed surface heat fluxes sometimes consistent with necessary upper-ocean heat losses – depends on ocean heat source

3) Understanding fate of sea ice during autumn freeze-up requires surface flux measurements and understanding of interdisciplinary processes

a)History of surface fluxes and upper-ocean heating throughout melt and freeze-up period

b)Understand atmospheric processes that impact radiative and turbulent surface fluxes

- boundary-layer structure, **thermal advection**, low-level winds, cloud characteristics (macro- and microphysics, temperature)

c)Understand ocean processes that impact release of ocean heat

- heat storage vertical profile (e.g., surface energy fluxes, currents), wave characteristics/vertical mixing events

