The O-Buoy Chemical Network for Long Term Studies of O₃, CO₂, and BrO over the Arctic Ocean

P. Matrai¹, J. W. Bottenheim², F. Chavez³, D. Perovich⁴, P. B. Shepson⁵, W. R. Simpson⁶, S. Netcheva², C. Rauschenberg¹, C. Williams⁴, T. Valentic⁷, M. Carlsen⁵, G. Friederich³, R. Oglesbee⁵, C. Wahl³, P. J. Wyss⁵ and J. Zimmermann⁵

Students: W. Halfacre⁵, P. Peterson⁶, D. Carlson⁶, S. Walsh⁶, P. Joyce⁶, T. Knepp⁵

¹Bigelow Laboratory ²Environment Canada ³MBARI ⁴CRREL ⁵Purdue University ⁶U. Alaska, Fairbanks ⁷SRI-International

AON 2015, Seattle, WA

The O-Buoy Network: over the Arctic Ocean

Our scientific objectives:

- A network of on-ice atmospheric chemical measurements (O₃, BrO, and CO₂)
- Multi-year measurements for seasonal and interannual variability
- Validate satellite observations with *in-situ* data
- Some scientific questions:
- Will more seasonal ice in spring enhance Br chemistry and result in additional oxidized mercury inputs during transition to open waters?
- Will net atmospheric CO₂ concentrations change as a function of sea ice cover and quality?
- Will changes in Arctic sea ice extent and snow cover (salinity, acidity, temperature, radiation) affect halogen activation and O₃ chemistry?
- And many more!

Power

DOAS Scan head

Assembly & Cold Testing

Comms.

Meteorology

Knepp et al. (2010) Atmos. Meas. Tech.

DATA TRANSPORT NETWORK RELIABLE COMMUNICATIONS IN AN UNRELIABLE WORLD

- Data collection
- Monitor health and status
- Schedule and control
- Iridium transfer offsite
- Bandwidth management
- Post processing

<u>Totals</u>

- 15 buoys, 7 years
- 780,000 files / 18GB
- 106,600 photos

All through a low-bandwidth Iridium link with no lost data!

GPS: Latitude, longitude, speed, azimuth, pitch, roll Spring-Fall = 1x/h; recovery higher; Winter 1x/d

Met: air temp, RH, atm press, wind speed and direction Year-round = 12x/h => WMO

BrO (DOAS): atm. conc.; instrument temp, scan head tilt, frost counts, etc. Spring-Fall = 30x/h Winter = off

 O_3 : atm. conc.; instrument temp, press., flow rate, etc. Spring-Fall = 60x/h; up to 1800/h Winter = 4h/ 3d

CO₂: atm. conc.; instrument temp, air pressure, etc. Year-round = 2x/h

Camera: 3x/h -> movie. Winter: 1x/h Comms: 1x/h; winter: 1-2x/d) State: 12x/h

Challenges

BGOS/JOIS 2012 Ice Based Observatory #2 August 27, 2012

IMBB ITP 66

AOFB 27

ITM 2

O-buoy 8

Ice thickness (freeboard, snow depth) IMBB = 1.5 m (0.2 m, 0.02 m)O-buoy = 2.0 mAOFB = 1.50 mITP = 1.55 mITM = 1.92 mLocations @ 2353 LTC:

Locations:

O-Buoy websites:

1) General public information: http://www.o-buoy.org

2) Project data portal, storage, and display: http://obuoy.datatransport.org

3) Project Management: https://obuoy.basecamphq.com

4) Data archival: http://www.acadis.org

Deployments = 18 Recoveries = 5 +1 Re-deployments = 3

Seasonal O-Buoy Data Coverage (OB 1--OB12)

concentrations of CO₂, BrO, and O₃ from OB-2, deployed in the Beaufort Gyre from October 2010 through July 2011. Only a partial summer deployment (2011) is shown to emphasize short-term variability.

Pre-AON science (OB-1&2; Canadian OB-3&4)

Atmospheric vertical profiles (a) and surface conditions (b) of BrO measured with MAXDOAS over the course of four days in spring 2012.

Ozone Depletion Events (ODE) (OB-1-4) (Halfacre et al. 2014 ACP)

Dimensions of ODEs observed in the Beaufort Sea from OB-1 and OB-2 data

Unusual views & uses

OBuoy #12 2015-08-26 08:01:50 UTC

http://greatwhitecon.info/

Next? Understanding!

With O-Buoy data, we can now answer questions such as:

(1) Under what conditions are CO_2 air-ice-ocean fluxes important causes of atmospheric CO_2 variability over the Arctic Ocean and, conversely, when is long-range transport important?

(2) How do Arctic Ocean sea ice, snow, and vertical mixing conditions affect major atmospheric oxidants (ozone and reactive halogens)?

(3) How do interannual variability and long-term declines in sea ice affect atmospheric contaminants in the Arctic?

(4) Your question! => www.acadis.org

Thank you

