SIZRS-2013 00000 SIZRS-update

Work in progress

Conclusion O

Observed Atmospheric Profiles in the Arctic Seasonal Ice Zone and the Role of Synoptic Conditions

Zheng Liu and Axel Schweiger

Polar Science Center Applid Physics Laboratory University of Washington

November 17, 2015

(日) (同) (日) (日)

SIZRS-2013 00000 SIZRS-update

Work in progress

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion O

Introduction

Unique features of the atmospheric profiles in the Arctic

- temperature and moisture inversion, low-level jet (LLJ)
- static stability, mixed-phase cloud, surface energy budget, Arctic amplification
- data-sparse Arctic over sea ice

SIZRS-2013 00000 SIZRS-update

Work in progress

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion O

Introduction

Unique features of the atmospheric profiles in the Arctic

- temperature and moisture inversion, low-level jet (LLJ)
- static stability, mixed-phase cloud, surface energy budget, Arctic amplification
- data-sparse Arctic over sea ice
- Seasonal Ice Zone Reconnaissance Survey
 - USCG Arctic Domain Awareness flights in the Beaufort Sea
 - Atmospheric and oceanic measurements: dropsonde, visible/IR imaging, Lidar, AXCTD, AXCP, UpTempO buoy, AXIB buoy

SIZRS-2013 00000 SIZRS-update

Work in progress

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion O

Introduction

Unique features of the atmospheric profiles in the Arctic

- temperature and moisture inversion, low-level jet (LLJ)
- static stability, mixed-phase cloud, surface energy budget, Arctic amplification
- data-sparse Arctic over sea ice
- Seasonal Ice Zone Reconnaissance Survey
 - USCG Arctic Domain Awareness flights in the Beaufort Sea
 - Atmospheric and oceanic measurements: dropsonde, visible/IR imaging, Lidar, AXCTD, AXCP, UpTempO buoy, AXIB buoy

Approach

- Polar WRF simulations forced by reanalysis/analysis
- examine the performance of analyses and Polar WRF

Work in progress

Conclusion O

SIZRS transects and Polar WRF setting

Polar WRF setting:

- Δx = 30/10 km
- 54 vertical levels
- forcing: GFS/ERAI
- baseline+7-member ensemble

Baseline physics:

- MYJ PBL+surface
- Goddard microphysics
- RRTMG radiation
- Grell-Deveny cumulus
- nudging above 168 hPa

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Introduction	SIZRS-2013	SIZRS-update	Work in progress	Conclusion
0	0000	00	00	0

Observed and simulated mean profiles (22 total)

- General features reproduced
- Small ensemble spread
- Polar WRF \sim forcing
- large differences between analyses and observations
- Low-level warm bias in ERAI, moist bias in ERAI and GFS
- Weaker LLJ and smaller wind turning angle in the analyses compared to the Polar-WRF and observations

Introduction	SIZRS-2013	SIZRS-update	Work in progress	Conclusion
0	0000	00	00	0

Statistical significance of analyses biases (bootstrap)

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Inti	rod	uct	io	n
0				

SIZRS-2013 00000 SIZRS-update

Work in progress

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion O

Analysis

Significantly improved LLJ in Polar WRF

- vertical resolution: improvement in low resolution runs too
- mixing: artificially enhanced mixing in GFS/ERAI
- LLJ weakens with enhanced mixing in Polar WRF

SIZRS-2013 00000 SIZRS-update

Work in progress

Conclusion O

Analysis

Significantly improved LLJ in Polar WRF

- vertical resolution: improvement in low resolution runs too
- mixing: artificially enhanced mixing in GFS/ERAI
- LLJ weakens with enhanced mixing in Polar WRF

Low-level warm bias in ERAI (consistent with previous obs.)

• ERAI Sea ice issue: set SIC to 0 when T>274.26K

SIZRS-2013 00000 SIZRS-update

Work in progress

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion O

Analysis

Significantly improved LLJ in Polar WRF

- vertical resolution: improvement in low resolution runs too
- mixing: artificially enhanced mixing in GFS/ERAI
- LLJ weakens with enhanced mixing in Polar WRF

Low-level warm bias in ERAI (consistent with previous obs.)

- ERAI Sea ice issue: set SIC to 0 when T>274.26K
- ERAI lateral + ERAI SST + GFS SIC: not sensitive
- ERAI lateral + GFS SST/SIC: like WRFG→SST or melt pond?
- warm bias over packed ice as well: ice model?

SIZRS-update

Work in progress

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion O

Conclusion so far

- General features reproduced in analyses and Polar WRF
- biases in both ERAI and GFS

SIZRS-2013

- weak LLJ and smaller turning angle due to too strong mixing
- Iow-level warm bias in ERAI: SST/melt pond/ice model?
- moist bias in ERAI and GFS
- Significantly improved LLJ in Polar WRF
- Polar WRF T/q follows forcing
- large inter-model discrepancies as well as model biases \rightarrow need more observations like SIZRS

Reference:

Zheng Liu, Axel Schweiger, and Ron Lindsay, 2015: Observations and Modeling of Atmospheric Profiles in the Arctic Seasonal Ice Zone. *Mon. Wea. Rev.*, 143, 39–53.

SIZRS-2013 00000 SIZRS-update

Work in progress

Conclusion O

Mean profiles: 2013–2015 (89+22)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Statistical significance of analyses biases

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

ction SIZRS-2013 SIZRS-update Work in progress

Synoptic classification using k-mean clustering

SIZRS observations show significantly different profiles: warm and dry, cold and moist

- Data: 6-hourly ERAI data at 6 levels from 1000 to 500 hPa
- Domain: 70°N to 80°N, 170°W to 130°W (red box).
- Variables: T, q_v, U,
 V, Z

Baroclinicity and temperature advection \Rightarrow inversions & LLJ

- State 1 (S01): high pressure, strong baroclinicity, strong cold advection from the Arctic Ocean
- S02: low pressure, weak baroclinicity, and weak cold advection from west.
- S03: high pressure, strong baroclinicity, and strong warm advection from Alaska

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• S04: moderate baroclinicity and warm advection

Next ...

- examine model performance under different conditions
- atmospheric profile \leftrightarrow cloud \leftrightarrow sea ice

SI

SIZRS-update

Work in progress

Conclusion

Conclusion

- General features reproduced in analyses and Polar WRF
- biases in both ERAI and GFS
 - weak LLJ and smaller turning angle due to too strong mixing
 - low-level warm bias in ERAI: SST/melt pond/ice model?
 - moist bias in ERAI and GFS
- Significantly improved LLJ in Polar WRF
- Polar WRF T/q follows forcing
- large inter-model discrepancies as well as model biases \rightarrow need more observations like SIZRS
- synoptic conditions have significant influence on the structure of the profile

Reference:

Zheng Liu, Axel Schweiger, and Ron Lindsay, 2015: Observations and Modeling of Atmospheric Profiles in the Arctic Seasonal Ice Zone. *Mon. Wea. Rev.*, 143, 39–53.