Integrating Tower EC, Satellite Remote Sensing and Ecosystem Modeling to Identify Changes in Hydrology and Carbon Fluxes across the Alaskan Arctic

Jennifer Watts, John Kimball, Youngwook Kim, Jinyang Du (U of Montana; NTSG); Walter Oechel, Donatella Zona (San Diego State U; U of Sheffield)
Identifying Changing Arctic Environments

Phenology

Surface Flooding

Plant Productivity

Soil Carbon Cycling
Satellite & Reanalysis Data

Monitor Changing Earth Surface Properties

Flux Towers & In Situ Sensors

Integrate with Ecosystem Modeling for Regional Carbon Observing System

\[GPP = \varepsilon \times PAR \times FPAR \]
\[\varepsilon = \varepsilon_{\text{max}} \times f(VPD) \times f(T_{\text{min}}) \times f(\theta) \]
\[R_{\text{aut}} = (1-C\text{UE}) \times GPP \]
\[NPP \]
\[C_{\text{met}} \quad C_{\text{str}} \quad C_{\text{rec}} \]
\[R_{\text{het}} = f(C_{\text{pool}}, T_s, \theta) \]

\[R_{\text{CH4}} = (R_o \times \varphi_s) \times C_{\text{pool}} \times Q_{10}^{(T_s-T_p)/10} \]

Aerobic vs Anaerobic

\[C_{\text{CH4}} \]

Plant Soil Diffusion Ebullition

1Watts et al. 2014 Biogeosciences
2Kimball et al. 2015 SMAP L4_C User Guide
North Slope Tower Transect

Climate Variability

<table>
<thead>
<tr>
<th></th>
<th>BEO/BES</th>
<th>ATQ</th>
<th>IVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elev. (m)</td>
<td>6</td>
<td>15</td>
<td>568</td>
</tr>
<tr>
<td>MAT (°C)</td>
<td>-12.6</td>
<td>-9.7</td>
<td>-7.9</td>
</tr>
<tr>
<td>MSP (mm)</td>
<td>72</td>
<td>100</td>
<td>210</td>
</tr>
<tr>
<td>ALD (cm)</td>
<td>-36</td>
<td>-50</td>
<td>-60</td>
</tr>
</tbody>
</table>

Vegetation Communities

BES/BEO: Inundated & polygonal tundra (grass, sedge, moss)

ATQ: Moist sedge tundra & tussock

IVO: Tussock tundra & dwarf shrub, moss and lichen
Satellite Observations: Monitoring Regional Change

1,2 AMSR Surface Water

1982-2014

3 AMSR Non-Frozen Season

2003-2013

4 SSMI/MODIS Active Layer Depth

2003-2009

5 AVHRR/MODIS NDVI

1982-2014

Wetting
Drying
Extending
Decreasing
Increasing
Decreasing
Greening
Browning

Watts et al. 2014 ERL; Du et al. 2015 In-Review; Kim et al. 2015 ERL; Park et al. 2015 RSE; Didan et al. 2010 IGRSS
Satellite Observations: Monitoring Tower Transects

1Surface Water Inundation

1Surface (0-2 cm) Soil Moisture

1Vegetation Optical Depth

MOD13Q1 250-m NDVI

1AMSR-E/2 Daily Land Parameter Retrievals: http://www.ntsg.umt.edu/project/amsrelp
Ecosystem Modeling & Tower Carbon Fluxes

BES

![Graph of CH₄ emissions](image)

- **CH₄** (mgC m⁻² d⁻¹)
- **NEE**: -4 g C m⁻² yr⁻¹
- **CH₄**: 3.5 g C m⁻² yr⁻¹

IVO

![Graph of CH₄ emissions](image)

- **CH₄** (mgC m⁻² d⁻¹)
- **NEE**: -12 g C m⁻² yr⁻¹
- **CH₄**: 6.5 g C m⁻² yr⁻¹

Wet Sedge

Tussock
Scaling Carbon Fluxes to Regional Alaska

• Beta release of NASA SMAP L4 Carbon Maps
 - Radiometer informed soil moisture & temp.
 - 9 km spatial res. & daily NEE, GPP, Reco fluxes
 - Data from April 2015 onward

![Graph showing NEE data for May to October 2014.]

• Off-line 1 km TCF CH₄ Flux Model
 - Regional validation using tower data (5+ sites)
 - Evaluation against airborne & tall tower obs., inverse models

1SMAP L4 Global Daily Carbon Products: http://nsidc.org/data/SPL4CMDL
Project Summary & Conclusions

- **Continuous flux tower operations needed!**
 - Quantify cold season fluxes; spring/autumn periods
 - Capture interannual variability in NEE & CH₄
 - Extend tower network in Alaska to represent heterogeneous tundra environments

- **Integrate tower obs., remote sensing & modeling**
 - Satellite data driven modeling captures flux variability; detects transitions from carbon sink to source
 - Carbon budgets: NEE + terrestrial (& lake) CH₄ emissions
 - Enhance Arctic monitoring through daily passive microwave retrievals (*e.g. surface wetness/temp., frozen/non-frozen conditions, vegetation dynamics, permafrost degradation*)
Thank You!

NASA Earth & Space Science Fellowship (NNX13AM92H)
Remote Sensing & Modeling: NASA (1368208, 49691B, NNX14AB20A)
Flux Tower Operations: NSF (ARC 1204263) and DOE (DE-SC005160)