Enhancing observational capabilities for Arctic Ocean ecosystems: Innovations using Ice-Tethered Profilers

Sam Laney

Woods Hole Oceanographic Institution Woods Hole, Massachusetts, USA

Co-authors:

J Toole, R Krishfield (WHOI)

M-L Timmermans (Yale Univ.)

AOOSM – 18 November 2015 – Seattle, WA

Marine ecosystems in the central Arctic → difficult to observe

'Usual' ecosystem observing tools often unsuitable or strongly challenged

Ships: too few, too seasonal

Satellites: clouds, aerosols, sea ice, geometry

Profiling drifters: ice cover → data offload

- Arctic is far behind in terms of ocean observing approaches, esp. where ice is perennial.
- Emphatically so with respect to basic ecosystem properties.

'Basic ecosystem properties' in a changing Arctic Ocean?

One working definition: the biological actors & key resources associated with primary production (i.e., photosynthetic activity)

"base of the food web"

Actors:

algae living on, interstitially within, or on the underside of sea ice:

'ice algae', 'sea ice algae'

Or in water column below (to ~100m):

'phytoplankton'

Needed resources:

Sunlight & nutrients (C,N,P, trace metals, etc.)

Photosynthesis & production under perennial sea ice

- Much of primary production under Arctic ice still poorly known:
 - Where are phytoplankton found (vertically, spatially) & when?
 - How long is the growing season? When does it start, end?
 - Dynamics of interactions between <u>ice algae phytoplankton</u>

Measuring ecosystem variables using Ice-Tethered Profilers

ITP: autonomous profiler system to measure water column property profiles under perennial sea ice.

Like Argo float, except tethered to a cable in ice. Typically 4x profiles per day over the top 800m.

ITPs: a now-mature observing platform for the central Arctic

- 85+ ITPs deployed in Arctic to date
- Decade of experience: ITP1 in 2004
- A major contributor → physical oceanography component of NSF's AON

t roperties using ITPs, robustly:

2010-2014: a 5-year NSF AON project to measure basic ocean ecosystem properties using ITPs, robustly:

<u>Immediate goal:</u> to adapt off-the-shelf fluoros & PAR sensors to ITPs, to measure phytoplankton biomass & light (2 basic variables) over annual time scales.

<u>Longer term goal:</u> to begin broader interdisciplinary effort to improve robustness & sophistication in observing basic ocean ecosystem variables in Arctic basins

Prototype bio-optical sensor suite: using semi-custom sensors

- Chlorophyll fluorometer (phytoplankton biomass)
- Radiometer (light levels)
- ♦ (triplet: also CDOM, b_{back})
- Copper shutter: for biofouling
- 'Smart' microcontroller to simplify integration of sensors
 & commercial McLane ITP

Laney et al. 2014

8 prototype "bio-optical" ITPs deployed in 2011-2013

7 of which collected profiles for at least 3 months

ITP	days	km	# profs	ECO data	PAR data
48	433	3085	1370	\checkmark	×
52	99	925	377	\checkmark	\checkmark
60	105	1200	260	\checkmark	×
64	360	3324	1124	✓	✓
65	405	2671	904	1/2	×
68	® *	*	® ×	×	×
69	182	2067	414	\checkmark	\checkmark
72	107	1196	242	3/4	√

Two systems: 1 year chl data

One system: 1 year light data

Chlorophyll (algal biomass): seasonal trends in depths & timing

Central Arctic (Transpolar Drift) vs. Canada Basin (Beaufort Gyre)

Regional ecosystem trends inferred from multiple years

E.g., comparing the Central Arctic (CA) vs. Canada Basin (CB)

Apparent consistent trends in algal biomass in CA & CB:

Central Arctic: high latitude & less light under ice → biomass higher in water

Canada Basin: lower
latitude, more light →
biomass deeper in water
column. Chlorophyll shoals
as insolation ↓ in fall.

Arctic growing season is short: frequent profiling is valuable

ITP48 – Central Arctic

4 profiles day⁻¹ Mar-Oct 1.5 profiles day⁻¹ Nov-Feb All profiles: 25 cm vertical resolution

Day-to-day trends in chl

In time derivative of chl can see 1-2 week perturbs →

Associated with changes in apparent particle export

Vertical perturbations on plankton: bio-optical tracers

- Using colored dissolved organic matter (CDOM) as a tracer for vertical displacements due to passing eddies
- ❖ Different eddy signatures → different effect on biology (↓ vs. ↑)
- Impact on photosynthesis & production?

Laney & Timmermans unpubl.

Under-ice light field: penetration depths & seasonal trends

Robust Autonomous Arctic Observations: <u>Successes</u> & Challenges

- High-resolution, year-long time series of basic ecosystem variables (algae & light) in perennially ice-covered regions of the central Arctic.
- New perspectives into key trends and patterns in under-ice primary producers, on newly observed spatiotemporal scales.
- ❖ Added important biological variables to ITP capability & the AON.
- ❖ Data available on ITP (<u>www.whoi.edu/itp</u>) & PI websites.

Robust Autonomous Arctic Observations: Successes & Challenges

ITP	ITP days	# daigs profs	Total kTP profs	#AC pEGEO profs	ECCC danaR profs	PAR# da Ra AR > 0
48	48 433	433 1375	3085 1375	1370 94%	17%	x 21
52	52 99	99 379	925 379	377 95%	96%	191
60	60 105	105 260	1200 260	260 50%	0%	× N/A
64	360 ⁴	1360 1124	3324 1124	1124 98%	99%	√ 373
65	4055	904	2671	904%	1/29%	× ₃₀
68	6 8	8	683	% %	5 %	x N/A
69	18929	478	24 6 8	48/4%	9 9%	√ 107
72	10772	307	1396	2 42 %	3/47%	√ 30

- Caught many issues with these sensors before deployment; not all!
- ❖ Safe to say: underestimated the robustness of commercial sensors for long-term unattended use in Arctic on ITPs → many sensor failures

Most sensors not designed for long term, unattended Arctic use

- Few "biology" sensors are tested for long-term, polar immersion.
- "Improvements" for production purposes might introduce new problems in field use
- Even highly reputable companies encounter such issues
- Even to do something 'simple' (PAR & chlorophyll fluorescence) on ITPs required considerable customization with vendors.

Phone: +1 425-643-9866 Fax: +1 425-643-9954 E-mail: seabird@seabird.com Web: www.seabird.com

Field Service Bulletin 24

January 2012

SBE 43, 43I, and 43F Dissolved Oxygen Sensors

- Few incentives for vendors to develop robust, 'Arctic-grade' sensors
- Leaves the research community ill-equipped for Arctic observing

The future did not arrive as planned

Q: Who was keeping an eye on sensor drift, degradation, etc.?

A: It used to be the vendors...

"The strategy adopted at Chelsea Instruments Ltd. to achieve the operational requirements is to design oceanographic sensors using built-in test and recalibration equipment to achieve long-term calibration stability and low maintenance."

- Oceanographic sensors to measure ecosystem variables typically lack BITE.
- Oceanographic sensor industry has largely abandoned built-in test approaches
- This leaves us poorly equipped

"Would anyone trust data from a fluorometer or PAR sensor that had been dangling in the ocean without maintenance for 3 years?"

- anonymous NSF AON reviewer with a very reasonable concern

Sensitive to fouling: Shutter

Drift? Rigid fiber to feed fluoro EX → PAR sensor

Qualitative view of long-term trends in feedback.

Far from an ideal solution for drift monitoring.

Improved robustness: some suggestions

These problems are nothing new, just acute because it's the Arctic...

How can we do better?

1) <u>Consumer Reports</u> → independent assessment of reliability of sensors for AON (i.e., a seal of approval). If a sensor's likely to fail, don't use it.

A vision for better observing ice covered ecosystems

Cross-disciplinary measurements:

★ IMBs ★ incident solar insolation

Depths < 7m unobserved by ITPs (!) very important depths ecologically

Aspects affecting water column productivity:

- ✓ Chlorophyll ✓ light × nutrients
- ★ Ecologically appropriate profiling

Export production: sinking & C fluxes

Similarly, 'ecosystem' observing on other platforms in Arctic Observing Network

Acknowledgements

ITP team key members:

John Toole & Rick Krishfield (Woods Hole Oceanographic Institute)

Mary-Louise Timmermans (Yale University)

Thanks to:

2015 AOOSM Organizers

NSF Office of Polar Programs
WHOI Clark Initiative

ONR Office of Naval Research

Dr. Benjamin Rabe (AWI)

Direct support for bio-optics research on ITPs through:

WHOI Arctic Research Initiative

NSF Office of Polar Programs

