Enhancing observational capabilities for Arctic Ocean ecosystems: Innovations using Ice-Tethered Profilers

Sam Laney

Woods Hole Oceanographic Institution Woods Hole, Massachusetts, USA AOOSM – 18 November 2015 – Seattle, WA J Toole, R Krishfield (WHOI) M-L Timmermans (Yale Univ.)

Co-authors:

Marine ecosystems in the central Arctic \rightarrow difficult to observe

'Usual' ecosystem observing tools often unsuitable or strongly challenged

Ships: too few, too seasonal

Satellites: clouds, aerosols, sea ice, geometry

Profiling drifters: ice cover \rightarrow data offload

- Arctic is far behind in terms of ocean observing approaches, esp. where ice is perennial.
- Emphatically so with respect to basic ecosystem properties.

'Basic ecosystem properties' in a changing Arctic Ocean?

One working definition: the biological actors & key resources associated with primary production (i.e., photosynthetic activity)

"base of the food web"

underside of sea ice

K. Frey, Clark University

Actors:

algae living on, interstitially within, or on the underside of sea ice:

'ice algae', 'sea ice algae'

Or in water column below (to ~100m):

'phytoplankton'

Needed resources:

Sunlight & nutrients (C,N,P, trace metals, etc.)

Photosynthesis & production under perennial sea ice

- Much of primary production under Arctic ice still poorly known:
 - <u>Where</u> are phytoplankton found (vertically, spatially) & <u>when</u>?
 - <u>How long</u> is the growing season? <u>When</u> does it start, end?
 - Dynamics of interactions between <u>ice algae phytoplankton</u>

Measuring ecosystem variables using Ice-Tethered Profilers

ITP: autonomous profiler system to measure water column property profiles under perennial sea ice.Like Argo float, except tethered to a cable in ice.Typically 4x profiles per day over the top 800m.

ITPs: a now-mature observing platform for the central Arctic

- 85+ ITPs deployed in Arctic to date
- Decade of experience: ITP1 in 2004
- A major contributor → physical oceanography component of NSF's AON

2010-2014: a 5-year NSF AON project

to measure basic ocean ecosystem properties using ITPs, robustly:

<u>Immediate goal:</u> to adapt off-the-shelf fluoros & PAR sensors to ITPs, to measure phytoplankton biomass & light (2 basic variables) over annual time scales.

<u>Longer term goal:</u> to begin broader interdisciplinary effort to improve robustness & sophistication in observing basic ocean ecosystem variables in Arctic basins

Prototype bio-optical sensor suite: using semi-custom sensors

- Chlorophyll fluorometer (phytoplankton biomass)
- Radiometer (light levels)
- ✤ (triplet: also CDOM, b_{back})
- Copper shutter: for biofouling
- 'Smart' microcontroller to simplify integration of sensors & commercial McLane ITP

8 prototype "bio-optical" ITPs deployed in 2011-2013

7 of which collected profiles for at least 3 months

ITP	days	km	# profs	ECO data	PAR data
48	433	3085	1370	\checkmark	×
52	99	925	377	\checkmark	\checkmark
60	105	1200	260	\checkmark	×
64	360	3324	1124	\checkmark	\checkmark
65	405	2671	904	1/2	×
68	®X(₽X	₽X	×	×
69	182	2067	414	\checkmark	\checkmark
72	107	1196	242	3/4	\checkmark

Two systems: 1 year *chl* data One system: 1 year light data

Chlorophyll (algal biomass): seasonal trends in depths & timing

Central Arctic (Transpolar Drift) vs. Canada Basin (Beaufort Gyre)

Regional ecosystem trends inferred from multiple years

E.g., comparing the Central Arctic (CA) vs. Canada Basin (CB)

Apparent consistent trends in algal biomass in CA & CB:

<u>Central Arctic</u>: high latitude & less light under ice \rightarrow biomass higher in water

Canada Basin: lower latitude, more light → biomass deeper in water column. Chlorophyll shoals as insolation ↓ in fall.

Arctic growing season is short: frequent profiling is valuable

4 profiles day⁻¹ Mar-Oct 1.5 profiles day⁻¹ Nov-Feb All profiles: 25 cm vertical resolution

Day-to-day trends in *chl*

In time derivative of chl can see 1-2 week perturbs \rightarrow

Associated with changes in apparent particle export

Vertical perturbations on plankton: bio-optical tracers

- Using colored dissolved organic matter (CDOM) as a tracer for vertical displacements due to passing eddies
- ◆ Different eddy signatures → different
 effect on biology (↓ vs. ↑)
- Impact on photosynthesis & production?

Laney & Timmermans unpubl.

Laney ASOOM – Seattle WA, Nov 18 2015

Under-ice light field: penetration depths & seasonal trends

Robust Autonomous Arctic Observations: <u>Successes</u> & Challenges

- High-resolution, year-long time series of basic ecosystem variables (algae & light) in perennially ice-covered regions of the central Arctic.
- New perspectives into key trends and patterns in under-ice primary producers, on newly observed spatiotemporal scales.
- ✤ Added important biological variables to ITP capability & the AON.
- Data available on ITP (<u>www.whoi.edu/itp</u>) & PI websites.

Robust Autonomous Arctic Observations: Successes & Challenges

ITP	ITP days	# daigs profs	Total kTP profs	t≇C p Ect≎O profs	ECCOC daRaR profs	PAR# dan244 > 0
48	48 433 52	433 1375 99	3085 1375 925	1370 94% 377	✓ 17%	★ 21
52	99	379	379	95%	96%	191
60	60 105	105 260	1200 260	260 50%	0%	× N/A
64	64 360	360 1124	3324 1124	1124 98%	99%	✓ ₃₇₃
65	405 ⁵	9 84	2671	904 45%	1/29%	× ₃₀
68	68 ×	8 Ø	683	∛%	₩%	× _{N/A}
69	1829	4 <i>7</i> 8	2 4 Øg	48164%	19 %	√ 107
72	10772	307	1 396	27422%	3/4%	√ 30

❖ Caught many issues with these sensors before deployment; not all!
 ❖ Safe to say: underestimated the robustness of commercial sensors for long-term unattended use in Arctic on ITPs → many sensor failures

Most sensors not designed for long term, unattended Arctic use

- Few "biology" sensors are tested for long-term, polar immersion.
- "Improvements" for production purposes might introduce new problems in field use
- Even highly reputable companies encounter such issues
- Even to do something 'simple' (PAR & chlorophyll fluorescence) on ITPs required considerable customization with vendors.

Sea-Bird Electronics, Inc. 13431 NE 20th Street Bellevue, WA 98005

Phone: +1 425-643-9866 Fax: +1 425-643-9954 E-mail: seabird@seabird.com Web: www.seabird.com

Field Service Bulletin 24

January 2012

SBE 43, 43I, and 43F Dissolved Oxygen Sensors

Few incentives for vendors to develop robust, 'Arctic-grade' sensors

Leaves the research community ill-equipped for Arctic observing

The future did not arrive as planned

bration stability and low maintenance."

Q: Who was keeping an eye on sensor drift, degradation, etc.?

A: It used to be the vendors...

"The strategy adopted at Chelsea Instruments Ltd. to achieve the operational requirements is to design oceanographic sensors using built-in test and recalibration equipment to achieve long-term cali-

Built-In Testing for Oceanographic Sensors

Sensors Are Moving from Research to Routine Monitoring; Built-In Recalibration Aids Long-Term Stability, Low Maintenance

By Dr. J. P. Vessey Technical Director and Dr. T. H. Williams Chiefe Design Engineer Chebrea Instruments Ltd. East Molever, Surrey, U.K.

- Oceanographic sensors to measure ecosystem variables typically lack BITE.
- Oceanographic sensor industry has largely abandoned built-in test approaches
- This leaves us poorly equipped

"Would anyone trust data from a fluorometer or PAR sensor that had been dangling in the ocean without maintenance for 3 years?"

- anonymous NSF AON reviewer with a very reasonable concern

Sensitive to fouling: Shutter Drift? Rigid fiber to feed fluoro $EX \rightarrow PAR$ sensor

Qualitative view of long-term trends in feedback. Far from an ideal solution for drift monitoring.

Laney ASOOM - Seattle WA, Nov 18 2015

Improved robustness: some suggestions

These problems are nothing new, just acute because it's the Arctic...

How can we do better ?

 <u>Consumer Reports</u> → independent assessment of reliability of sensors for AON (i.e.., a seal of approval). If a sensor's likely to fail, don't use it.

A vision for better observing ice covered ecosystems

Cross-disciplinary measurements:

- \star IMBs \star incident solar insolation
- Depths < 7m unobserved by ITPs (!) very important depths ecologically

Aspects affecting water column productivity: ✓ Chlorophyll ✓ light × <u>nutrients</u>

★ Ecologically appropriate profiling

Export production: sinking & C fluxes

Similarly, 'ecosystem' observing on other platforms in Arctic Observing Network

ITP team key members:

John Toole & Rick Krishfield (Woods Hole Oceanographic Institute) Mary-Louise Timmermans (Yale University)

<u>Thanks to:</u>

2015 AOOSM Organizers

NSF Office of Polar Programs WHOI Clark Initiative ONR Office of Naval Research Dr. Benjamin Rabe (AWI)

Direct support for bio-optics research on ITPs through:

WHOI Arctic Research Initiative

