Influence of Arctic liquid clouds on surface energy fluxes

MATTHEW SHUPE AND OLA PERSSON UNIVERSITY OF COLORADO - BOULDER

Arctic liquid clouds

- Strong driver of surface energy (implications for the cryosphere)
- High fractional occurrence (persistent)
- Potential sensitivities to changing climate (temperature, moisture)

Model Deficiencies

de Boer et al. 2012

Models struggle with liquid

- Occurrence fraction
- Vertical distribution
- Condensed mass

These can have big implications

Observations

- DOE ARM site in Barrow, Alaska
- ~ 10-year data set
- Ground-based observations
- Cloud presence / liquid water path
- Surface radiation / turbulent fluxes (bulk turbulent fluxes)
- Sub-surface energy fluxes
- Method:
 - Examine monthly statistics
 - Compare fluxes when liquid present or not

 $F_{atm} = Q_{IW} + Q_{SW} + H_S + H_I$

Liquid Occurrence

"No Liquid": LWP < 5 g/m² "Liquid": LWP > 5 g/m² "Opaque": LWP > 30 g/m²

Longwave Radiation

Liquid = less surface cooling to space

Shortwave Radiation

Surface albedo

Liquid = less surface warming from the sun

Turbulent and Total Atmos

Liquid clouds diminish turbulent fluxes and the net atmospheric flux

Large warming in June:

- Snow melts => Large increase in SWN
- Surface-atmos structure takes time to adjust
- Surface turbulent cooling increase lags

Impact on sub-surface

Atmospheric flux drives soil flux

Their difference leads to changes in soil temperature

June and fall transitions in soil T largely driven by "non-liquid" periods.

Liquid Forcing of Fluxes

$$\label{eq:local_local_states} \begin{split} \mathsf{LCF} &= \mathsf{Liquid} \ \mathsf{Cloud} \ \mathsf{Forcing} \\ \mathsf{LCF}_{\mathsf{max}} &= (\mathsf{F}_{\mathsf{noliq}} - \mathsf{F}_{\mathsf{liq}}) \\ \mathsf{LCF}_{\mathsf{net}} &= \mathsf{LCF}_{\mathsf{max}} \ {}^*\mathsf{Liq}_{\mathsf{fraction}} \end{split}$$

- LCF_{LWN} peaks in fall due to occurrence of liquid clouds
- LCF_{SWN} peaks in summer due to snowmelt & sun cycle
- LCF_{RAD} negative for 4 mon
- LCF_{TURB} largely counteracts radiative forcing
- LCF_{ATM} negative only in June/ July
- LCF_{SOIL} follows LCF_{ATM}
- Liquid slows summer soil warming and winter soil cooling

Conclusions and Future

Arctic liquid clouds are frequent, even in winter
Cloud radiative effects drive responses in the system with implications for soil/permafrost
Clouds cool the soil in June and July

- What role does spatial heterogeneity play?
- Do cloud dynamics/mixing matter?
- What is the net effect on permafrost?
- How will liquid clouds change in the future?