Evaluating Biogeochemical Change in the Arctic using Atmospheric Oxygen (O_2/N_2) and the CMIP5 Models

> **Cindy Nevison** University of Colorado

Ralph Keeling, Manfredi Manizza

Scripps Institution of Oceanography

NSF Arctic Observing Open Science Meeting Seattle, Nov 18, 2015

Acknowledgements:

NSF Arctic Research, NASA Ocean Biology and Biogeochemistry, Michael Bender, Nicolas Cassar, Andrew Schuh, Keith Lindsay

Atmospheric O₂/N₂: Decreasing Trend and Seasonal Cycles

Scripps data from Keeling et al.

Atmospheric Potential Oxygen

Alert, Canada: Remove Land Signal from O₂/N₂ using CO₂ data

APO ~ O_2/N_2 + CO_2

Detrended Scripps data from Keeling et al.

APO Monitoring Sites Scripps Institution of Oceanography (SIO)

Changes in APO Seasonal Cycle

 Historical period of observation ~1991-1995 through 2015

• Future under RCP8.5 scenario ~2100

Observed Changes in APO Cold Bay, Alaska 1995-2015

Observed Changes in APO Alert, Canada 1991-2015

Observed Changes in APO Barrow, Alaska 1993-2015

Observed Changes in APO Seasonal Cycle 1991-95 to 2015

Alert, Canada: No major trends.

Barrow, AK: Hints of earlier spring rise, increased fall ventilation.

Cold Bay, AK: Rise in APO has shifted 10 days earlier, amplitude has increased ~ 25%.

Model APO GEOS-Chem forced with CESM air-sea O₂, CO₂ fluxes

CESM ocean biogeochemistry model summer air-sea O_2 flux 1991 v. 2015

CESM ocean biogeochemistry model autumn air-sea O_2 flux 1991 v. 2015

Modeled Changes in APO Cold Bay, Alaska

Modeled Changes in APO Alert, Canada

Modeled Changes in APO Barrow, Alaska

CESM ocean biogeochemistry model summer air-sea O_2 flux 2015 v. 2100

CESM ocean biogeochemistry model autumn air-sea O_2 flux 2015 v. 2100

Conclusions

- 1) Changing APO seasonal cycles provide a measure of large-scale changes in ocean biogeochemistry, including spring/summer production and fall/winter ventilation.
- 2) At northern APO monitoring sites (ALT, BRW, CBA), time series from early 1990s show varying degrees of change, indicating earlier spring rise in production and increased Arctic Ocean ventilation in fall.
- 3) Ocean biogeochemistry models predict significant future changes in the APO seasonal cycle, with competing influences from increases in productivity and ventilation in the Arctic Ocean and declines in the N Pacific and N Atlantic.

Extra Slides

Arctic Ocean Contribution to Barrow APO circa 2000

Changing Arctic Ocean Contribution to Barrow APO

Aug Northern Hemisphere

1997-2009 trends in timing of Chl seasonal maximum from satellite ocean color

In Arctic, patterns correspond to regions of sea ice loss.

(Kahru et al., 2010)

day per year

Satellite Ocean Color

Satellite Ocean Color

Changing Arctic Ocean Contribution to Alert APO

What causes Seasonal Cycles in APO? How are they linked to carbon export production?

Adapted from Keeling et al., 1993