Arctic mixed phase cloud and its relation with humidity and temperature inversions using ARM NSA observations

Shaoyue Qiu
University of North Dakota

Xiquan Dong and Baike Xi, University of North Dakota
Dominant cloud type; Significant influence in radiation flux and climate feedback

Unexpected long lifetime of Artic mixed phase cloud (AMC)

Solomon et al [2011, 2014] found that coincidence of temperature and humidity inversions at AMC top can serve as moisture source

Purpose of this study

1. What are the characteristics of Arctic humidity inversions and does it have seasonal variation?

2. Does humidity inversion favor the occurrence of mixed-phase cloud/does the occurrence of mixed-phase cloud increase with stronger humidity inversions?

3. Does the relative location of inversions (above or below cloud) influence mixed phase cloud occurrence?
4-5 March 2008

Relationship between mixed-phase cloud and T, q inversions

Vertical profile of temperature (red) and specific humidity (blue)
NSA Barrow site; Time period: 2006/10–2009/09

- Identification
 - Shupe [2007]

- Identification
 - Inversion intensity: difference in specific humidity/temperature between inversion base and top

Instrument

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Measurement used</th>
<th>resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceilometer</td>
<td>Backscatter, cloud base</td>
<td>Δz = 15m</td>
</tr>
<tr>
<td>MPL</td>
<td>Backscatter, cloud base, depolarization ratio</td>
<td>Δz = 15m</td>
</tr>
<tr>
<td>MMCR</td>
<td>Reflectivity, Doppler velocity, spectral width</td>
<td>Δz = 45m</td>
</tr>
<tr>
<td>MWR</td>
<td>Cloud LWP</td>
<td>Δt = 30s</td>
</tr>
<tr>
<td>Merged Sounding</td>
<td>Temperature</td>
<td>Δz = 20m (<3km)</td>
</tr>
</tbody>
</table>
Q1: What are the characteristics of Arctic humidity inversions and does it have seasonal variation?

- **Humidity inversion:** >80% with intensity >0.1g/kg; lowest in October
- **Winter:** weak inversions; <30% of inversions with intensity >0.4g/kg
- **Summer, strong inversion:** >50% of inversions with intensity > 0.5 g/kg
In winter, AMC occurrence strongly correlate with inversion intensity: increase 15%-35% as intensity 0.1→ 0.9 g/kg

In Summer, AMC occurrence is invariant with different intensities.

Intensity >0.9g/kg, ~40% of time AMC occurred with inversions, except for summer.
Q3: Inversion location relative to mixed-phase cloud (AMC)

Humidity inversions

- 18.7% AMC single layer; 23.6% multiple layer
- Humidity inversions ~ 5 times more often above than below
- AMC~100% time coexist with humidity inversions, except autumn
- Intensity above or below cloud, little difference
- Humidity inversion stronger in summer
Q3: Inversion location relative to mixed-phase cloud (AMC)

Temperature inversions

- Temperature inversion mostly above cloud, hardly below
- AMC~100% time coexist with temperature inversions in winter, spring
- Temperature inversion stronger in summer, weaker in autumn
From October 2006 to September 2007, mixed phase cloud occurrence: 42.3%, with single layer: 18.7%, multiple layer: 23.6%;

>80% of time, humidity inversion occurs; weak in winter (<30% with intensity >0.4g/kg) and strong in summer (>50% with intensity >0.5g/kg);

Mixed phase cloud occurrence increase with stronger humidity inversion in winter but does not change in summer;

When intensity >0.9g/kg, ~40% of time mixed-phase cloud occurred with inversions, except for summer;

Both temperature and humidity inversions occur 5-8 times more often above the cloud then below; in winter and spring, mixed-phase cloud coexist ~100% with inversions.
Humidity inversion occurrence for different intensities for the 12 months
Mixed-phase cloud occurrence for different humidity inversion intensities for the 12 months.
Mixed-phase cloud occurrence for different temperature inversion intensities for the 12 months.