The Arctic Ocean and Sea Ice State Estimate: A <u>synthesis</u> of observations and model

An T. Nguyen Massachusetts Institute of Technology

Estimating the Circulation and Climate of the Ocean <u>http://ecco-group.org</u>

collaborators: Patrick Heimbach, Ian Fenty, Ayan Chaudhuri, Rui Ponte, Gael Forget, Carl Wunsch

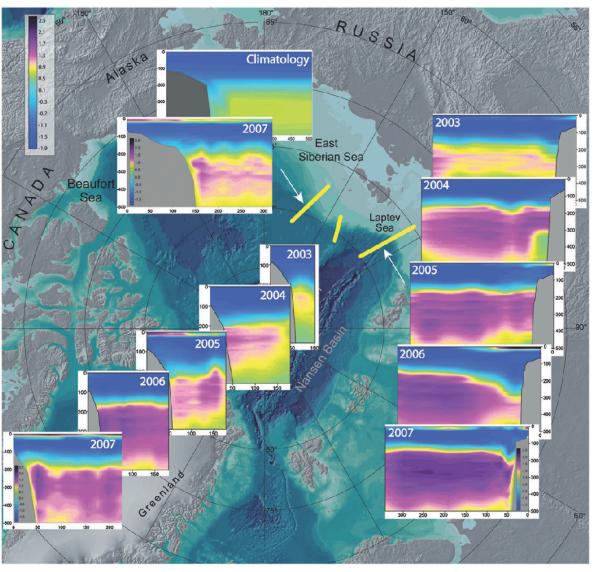
Outline

Q. How have existing obs helped improve modeling effort?Q. How opportunity for collaboration has the network enabled?

- 1. Background + Motivation
- 2. Data+Model synthesis

An estimate consistent with observations and model physics

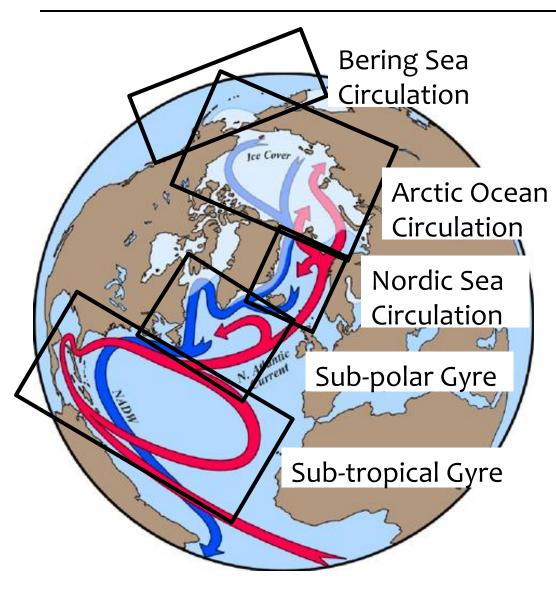
- 2A. Observational network
- 2B. Optimization
- 2C. Collaboration opportunities (1 example: Pacific inflow)
- 3. Summary



1. Recent observed changes

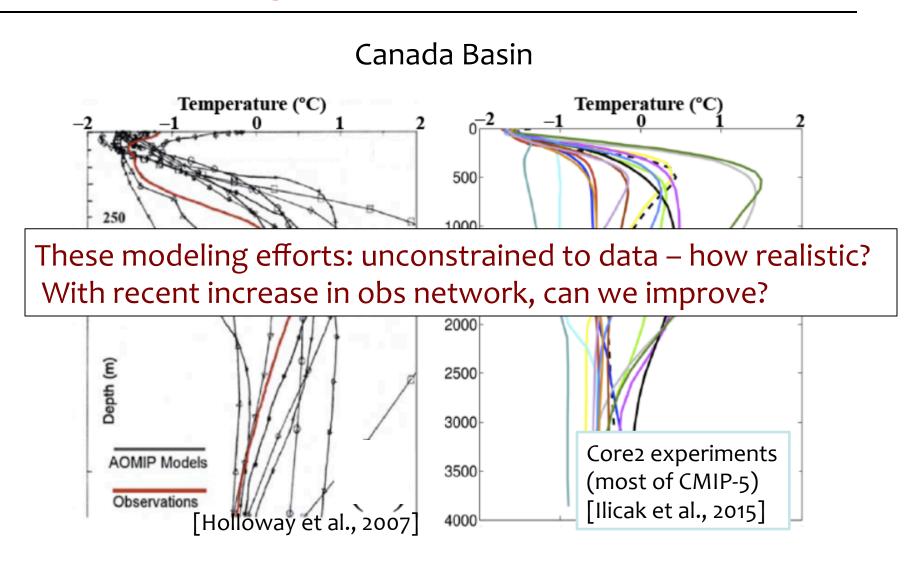
2000's: warm pulses of Atlantic Water into Arctic interior

Polyakov et al. [2012] Dmitrenko et al. [2008] Beszczynska-Möller et al. [2012]

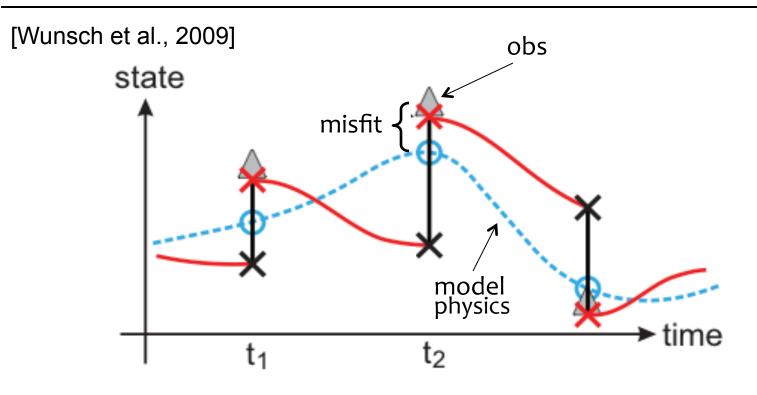

Controlling mechanisms?

1. Large-scale Circulation

- Upstream
- Downstream


Dynamical models:

- conservation laws
- consistent with obs
- reconstruct time-mean,
 time-variable properties
- > budgets
- > controling mechanism

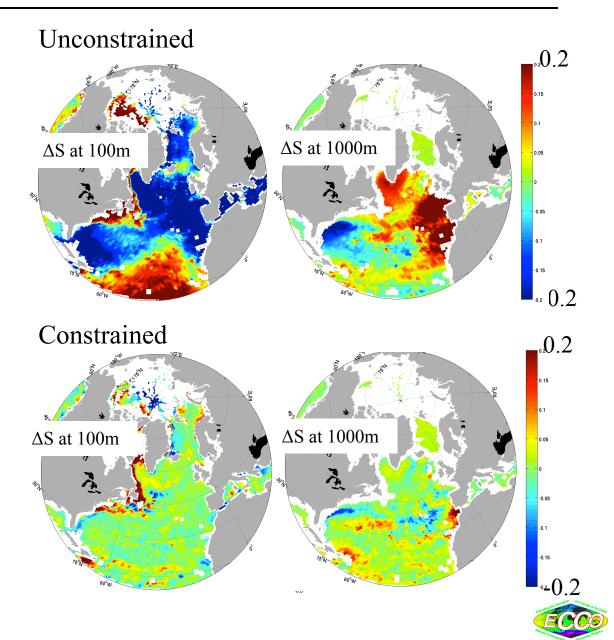

1. Current Modeling efforts

2. Inversion: combining observations and model

Control variables {u}:

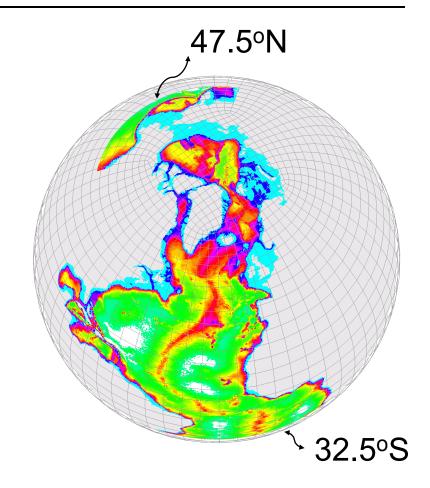
- Parameters which we invert for to minimize model-data misfits
- 1D, 2D, 3D

14117


Least-square minimization:

- Define objective $J = (misfit)^2$
- Solve ∂J/∂{u} = 0
 (subject to constraints)

2. ECCO-v4: Global bi-decadal state estimate [Forget et al., 2015]


- Global focus
- Coarse resolution (1°)
- <u>Misfits</u> to observed salinity 1992-2011

2. the Arctic Sub-polar gyre sTate Estimate (ASTE)

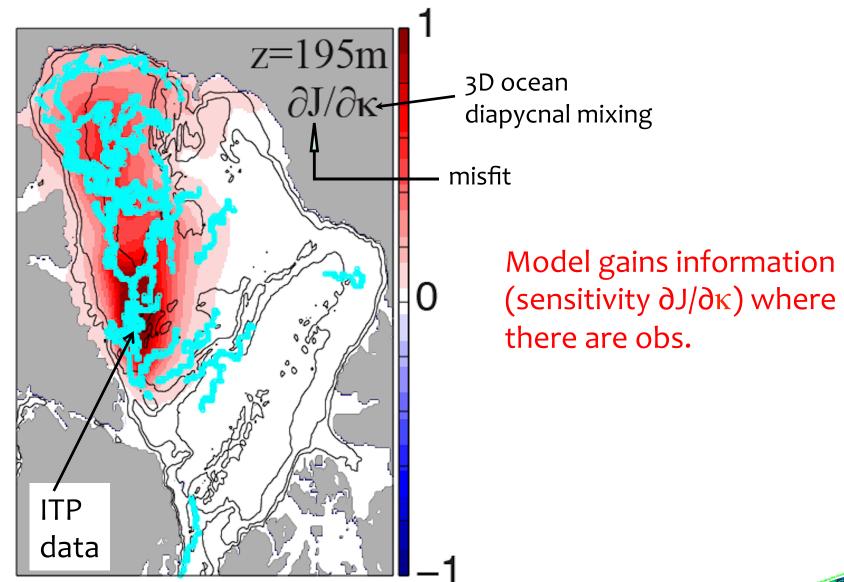
- Nested within the global ecco-v4
- 14 km in the Arctic
- Optimization period: **2002-2013** (GRACE, ICESat, ITP)
- <u>Initial conditions:</u>
 WOA14 modified (ocean),
 PSC (ice)
- <u>Control variables</u>:
 - initial conditions
 - time-varying atmospheric state,
 - 3-D ocean mixing parameters

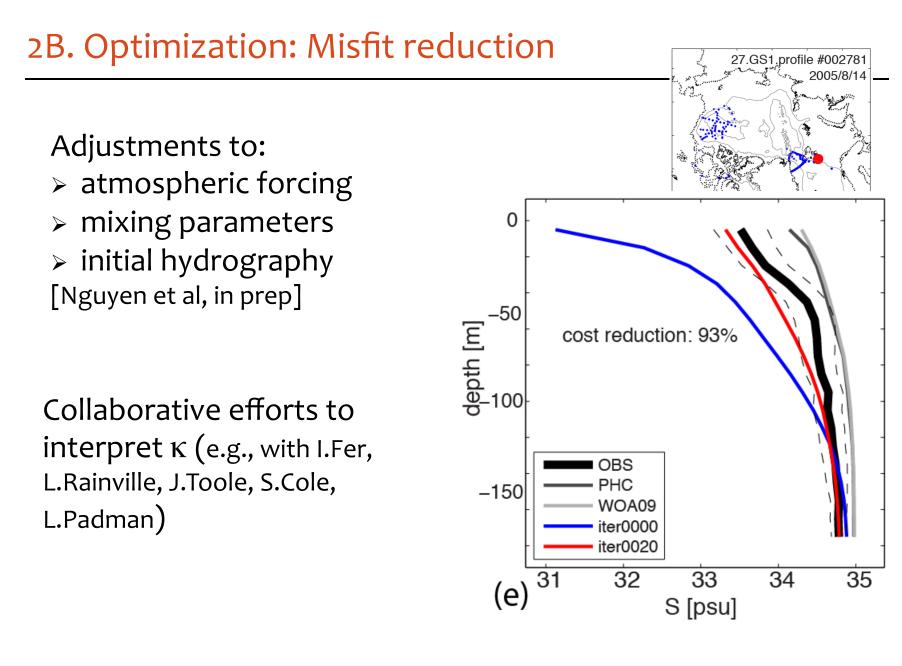
2A. data constraints

- Satellite and insitu (ARGO, ITP, NABOS, BGEP)
- Diverse platforms
 e.g., floats, submarine,
 ship tracks, mooring
- Sea ice + ocean T/S/U/V
- Cover Arctic main gateways e.g., Fram, Davis, Bering
- Diverse obs streams
- Online misfit calculations
 & optimization

Data Type	Spatial	Temporal	Description	Source
	coverage	coverage	-	
			Sea ic	e
Velocity	Arctic		passive	rkwok.jpl.nasa.gov/radarsat/3dayGr_table.html
		2002-2012	microwave &	nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html
			AVHRR, IABP	Kwok and Cunningham [2008], Fowler et al. [2013]
		2012-2015	ASCAT & SSMI	ftp.ifremer.fr/ifremer/cersat/products/gridded/psi-drift
		1997-2015	IMB buoys	imb.erdc.dren.mil/buoysum.htm, Perovich et al. [2013]
		2009-2015	ITP-V	Cole et al. [2014, 2015]
Thickness	Arctic	2011-2015	CryoSat-2	www.meereisportal.de/datenportal.html, Laxon et al. [2013a]
	Arctic	2010-2015	SMOS	icdc.zmaw.de/l3c_smos_sit.html, Tian-Kunze et al. [2014]
	Arctic	2003-2008	ICESat	rkwok.jpl.nasa.gov/icesat/index.html
				Kwok and Cunningham [2008], Kwok et al. [2009]
	Arctic	1997-2015	IMB buoys	imb.erdc.mil/buoysum.htm, Perovich et al. [2013]
	West Arctic	2003-2015	BGOS ULS	www.whoi.edu/beaufortgyre,Krishfield et al. [2014]
	Arctic	2002	Submarine ULS	www.nsidc.org
	GINs	2002	AWI ULS	Witte and Fahrbach [2005]
			mooring	
Concentration	Arctic	2002-2015	SSMI / OSISAF	osisaf.met.no/p/ice/index.html
FW transport	Fram Strait	2002	passive	Kwok and Rothrock [1999], Kwok et al. [2004]
	CAA	1997-2002	microwave	Kwok [2006]

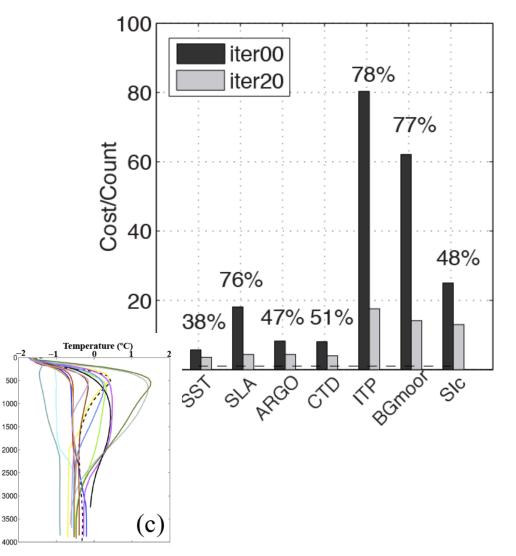
			Ocear	n
ITP (T,S)	Arctic	2004-2015	Ice-Tethered	www.whoi.edu/itp/data/
			Profilers	Krishfield et al. [2008b], Toole et al. [2011b]
Hydrographic	GINs, Fram Str.	1996-2006	ASOF	www.pangaea.de/
Survey (T,S)	Beaufort Sea	2003-2013	BGEP	www.whoi.edu/beaufortgyre/home/
	Laptev Sea	1993-2003		doi.pangaea.de/10.1594/PANGAEA.761766, Bauch et al. [200
	East Arctic	2007		doi.pangaea.de/10.1594/PANGAEA.763451, Bauch et al. [20]
	Chukchi Sea	2002-2004		psc.apl.washington.edu/HLD/Bstrait/Data/
	GINs	1980-2013	historical T/S	Våge et al. [2015]
Mooring	Fram Strait	1997-2010	ASOF	Fahrbach et al. [2001], Beszczynska-Möller et al. [2012]
(T,S,currents)	East Arctic	2002-2013	NABOS	nabos.iarc.uaf.edu/, Pnyushkov et al. [2013] and
	West Arctic	2002-2013	CABOS	Polyakov et al. [2012]
	Beaufort Gyre	2004-2015		www.whoi.edu/page.do?pid=66566
	Bering Strait	2002-2015		psc.apl.washington.edu/HLD/Bstrait/Data/
	Davis Strait	2004-2015		iop.apl.washington.edu/data.html
	North Pole	2000-2015	NPEO	psc.apl.washington.edu/northpole/index.html
Transports				
 Heat 	Fram Strait	1997-2010	ASOF	Schauer and Fahrbach [2004] &
 Freshwater 	Fram Strait	1997-2010	ASOF	Beszczynska-Möller et al. [2012]
– Heat	Bering Strait	1990-2015	mooring	Woodgate et al. [2005] &
 Volume 	Bering Strait	1990-2015	mooring	Woodgate et al. [2006] &
 Freshwater 	Bering Strait	1990-2015	mooring	Woodgate et al. [2012]
Data portal			IARC	oregon.iarc.uaf.edu/dbaccess.html
	High	2002–2015	IARC	climate.iarc.uaf.edu/geonetwork/srv/en/main.home
	Latitude		ICES	ocean.ices.dk/HydChem/HydChem.aspx?plot=yes
			SBI	www.eol.ucar.edu/projects/sbi/
	CAA	2002-2015	BIO	www.bio.gc.ca/science/data-donnees/base/run-courir-en.php
	Arctic	2002-2015	ACADIS	www.aoncadis.org/home.htm
MDT	High Lat.	2002-2009	ICESat,Envisat&	Farrell et al. [2012], Andersen and Knudsen [2009] &
	_		GRACE&GOCE	Johannessen et al. [2014], grace. jpl. nasa.gov
OBP	High Lat.	2004-2014	GRACE mascon	Watkins et al. [2015], grace. jpl.nasa.gov




2B. Optimization: Importance of data

Phir

Institute of



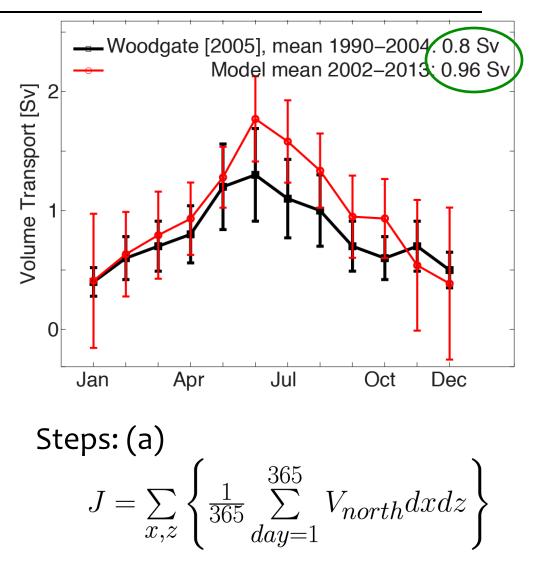
2B. Optimization: Misfit reduction

State estimate:

- Start from some trajectory
- Systematic way to minimize misfits
- Consistent with model physics and with obs.

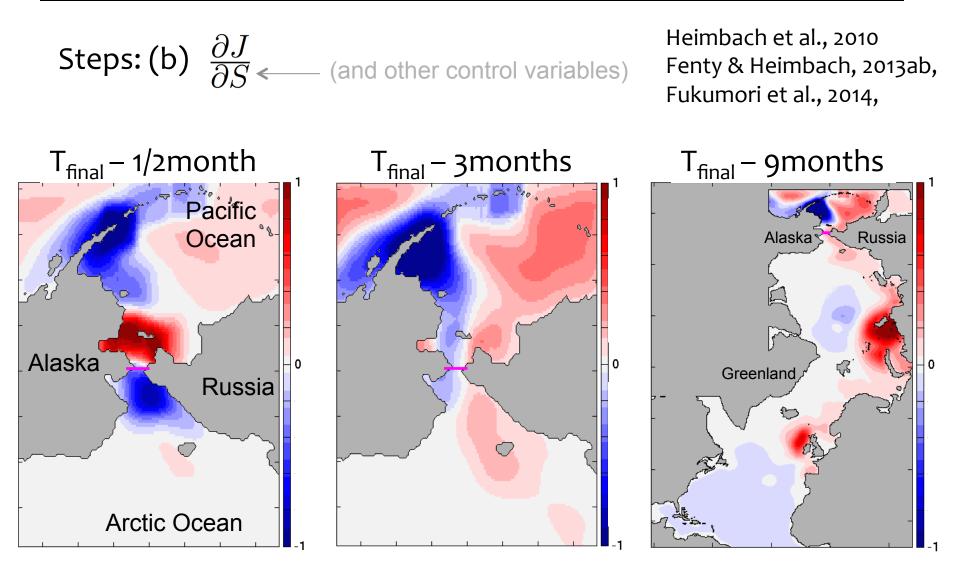
Applications:

- Budget analyses
- Circulation patterns
- Source and pathways
- Controling mechanisms
 - FW content,
 - Greenland FW flux
 - mass/heat/FW transports



2C. Collaborative Research: Bering Strait transport

- •40% of FW into the Arctic (large in mean *and* in variability)
- •An important part of the global FW cycle [Woodgate et al., 2015]
- Recent increase in Volumeand Heat inflowsLocal atmospheric effect?Local versus large-scale
- sensitivities in the Pacific and Atlantic ocean?


1111

2C. Collaborative research: Bering Strait transport

Plii

3. Going forward

State Estimate:

- > systematic reduction of model-observation misfits
- > (capable of) synthesizing all available data from AON
- > Allows for climate studies, e.g., circulation, budget, feedbacks

Collaboration:

- ► Mixing (J. Toole, WHOI, L. Padman, ESR)
- > Time mean Arctic ocean T/S and circulation (J. Toole, WHOI)
- Sea-ice climatology (I. Fenty, JPL)
- Pacific inflow dynamics (R. Woodgate, UW)
- Observing Network (L.Rainville and C.Lee, UW)

Thank you. Questions?

