
The	Arc(c	Freshwater	Balance:	
A	Network	Perspec(ve	

Craig	Lee 	 	Thomas	Haine 	 	Sheldon	Bacon 	 	Michael	Karcher	
APL-UW 	 	Johns	Hopkins	Univ. 	NOC,	Southampton 	AWI	



Freshwater	and	Arc(c	Change		
A	Framework	for	Quan(fying	&	Understanding	Change:	
•  Salinity	controls	Arc(c	Ocean	stra(fica(on	(‘β	ocean’,	Carmack,	
2007).	

•  Cold,	buoyant	surface	layer	isolates	sea	ice	from	heat	stored	below.	
•  Modulates	sea	ice	evolu(on,	coupling	between	atmosphere	&	ocean.	
Global	Impacts	
•  Sea	ice	growth	and	melt	important	component	of	meridional	
atmospheric	energy	transport	(Nakamura	and	Oort,	1988).	

•  Atlan(c	Meridional	Overturning	Circula(on	(AMOC)	sensi(ve	to	
buoyant	Arc(c	ou]low	into	deepwater	forma(on	regions	(e.g.	
Holland	et	al.,	2001;	Arzel	et	al.,	2008).	

•  Changes	in	Arc(c	freshwater	ou]low	also	modulate:	
-	Extent	and	strength	of	the	North	Atlan(c	subpolar	gyre.	
-	Northward	penetra(on	of	warm	subtropical	waters.	Impacts	fisheries	
		(Hátún	et	al.,	2009)	and	carbon	uptake	and	storage	(e.g.	Schuster	and		
		Watson,	2007).	
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A	Freshwater	Synthesis:	Aagaard	and	Carmack	(1989)	
S0	=	34.8		
Average	Arc(c	
Ocean	salinity	

Storage	(liquid):	80,000	km3	

Storage	(ice):	 				17,300	km3	

•  Sparse	data	–	surveys	
(snapshots),	some	(me	series.	

•  Measurements	not	
contemporaneous.	

•  Large	uncertain(es,	difficult	to	
discern	change.	



Challenges	
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•  Distributed	water	column	
measurements	in	Arc(c	interior.	

•  Resolve	dynamically	wide	straits.	
•  Measure	near	ice-ocean	interface.	
•  Sea	ice	volume.	
•  Resolve	broad	range	of	(mescales…	
seasonal	(and	shorter)	to	interannual.	

•  System	undergoing	rapid	change	
during	observing	period.	

•  Measurements	en(re	FW	system.	
•  Constrain	uncertain(es	to	resolve	
an(cipated	changes.	

•  Sustained	measurements	required	to	
resolve	secular	change.	



Serreze	et	al.	2006	(NSF	FWI)	
Inflow	
•  River	runoff	(3900	±	390	km3/yr)	
•  Bering	Strait	liquid	(2400	±	300	km3/yr)	
•  P-E	(2000	±	200	km3/yr)	
•  Greenland	melt	(330	±	20	km3/yr)	
•  Bering	Strait	sea	ice	(140	±	40	km3/yr)	
Storage	
•  Liquid	FW	(93,000	km3)	
•  Seasonal	sea	ice	(13,000	km3)	
•  Mul(-year	sea	ice	(10,900	km3)	

Ou<low	
•  CAA/Davis	Strait	liquid	(-3200	±	320	km3/yr)		
•  Fram	Strait	liquid	(-2700	±	530	km3/yr)	
•  Fram	Strait	sea	ice	(-2300	±	340	km3/yr)	
•  Hudson	Strait	(-200	±	?	km3/yr)	
•  Davis	Strait	sea	ice	(-160	±	?	km3/yr)	
•  Barents	Sea	Opening	(-90	±	90	km3/yr)	

•  1980-2004	composite.	
•  Terrestrial	and	oceanic	measurements	with	

reanalysis	products.	
•  Exploits	early	data	from	gateway	moorings.	
•  Interior	from	PHC	climatology.	
•  Large	jump	in	available	data.	

Haine	et	al.,	2015	

UP	
DOWN	
NO	EST	



Carmack	et	al.,	2015	

Major	River	
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Rawlins	et	al.,	2010	

River	Discharge	Quan(fying	River	
Discharge	

•  Major	rivers	
gauged.	

•  Long	records.	
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•  Correc(ons	for	shallow	Alaska	Coastal	
Current	(ACC).	

•  ACC	resolved	in	more	recent	
measurements.	

•  Variability	exceeds	other	inputs.	
•  Measurements	to	2015,	future	status	TBD.	
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Davis	Strait	

•  Mooring,	gliders	
&	hydrography.	

•  2004	-2015	
•  Future	status	

TBD	



Fram	Strait	
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•  East	Greenland	Shelf,	ice-ocean	interface	poorly	resolved.	
•  Measurement	program	ongoing	as	of	2015.	
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Storage	

•  Distributed	measurements	
from	ships,	Ice	Tethered	
Profilers	and	other	buoys.	

•  Increased	autonomous	
sampling	cri(cal.	

•  S0	=	35	

•  Good	agreement	between	observa(onal	
es(mates	and	NAOSIM	model.	

•  Trend	600	±	300	km3/yr.	
•  Increased	Bering	inflow,	decreased	Davis	

ou]low,	increased	mul(-year	ice	melt?	

Rabe	et	al.,	2014	
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Numerous	others	(CTD,	XCTD)	



Freshwater	Budget	
Haine	et	al.,	2015	

•  2004-2010	with	all	
gateways	quan(fied.	

•  Ice	storage	from	PIOMAS	
assimila(on	product.	

Difference	
2000-2010	vs	1980-2000	
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Mechanisms	of	FW	Flux	



Conclusions	
	FW	budgets	based	on	contemporaneous	(meseries	indicate:	
•  FW	is	accumula(ng	in	the	Arc(c,	CAA	and	Baffin	Bay.	
•  Changes	in	Bering	inflow	and	Fram	+	Davis	ou]low	below	
uncertain(es.	

•  Observed	increase	in	storage	consistent	with	increase	runoff	
and	P-E,	and	loss	of	FW	as	sea	ice.	

•  Surface	winds	exert	strong	controls	on	FW	export	and	storage.	
•  No	significant	change	in	FW	export	(Fram	+	Davis),	but	release	
likely	to	occur	in	response	to	changes	in	wind	pauerns.	

Sustained,	contemporaneous	measurements	of	all	primary	
components	allows	pan-Arc(c	inverse	calcula(ons	(e.g.	Tsubouchi	
et	al,	2012)	to	produce	self-consistent,	pan-Arc(c	budgets.	
	
Understanding	the	Arc(c	FW	system	requires	a	network	




