

What role do glaciers play in subarctic hydrology?

Anne Gaedeke¹ Anna Liljedahl¹, Tiffany Gatesman¹, Thomas Douglas², Shad O'Neel³

US Army Corps of Engineers ® Cold Regions Research and Engineering Laboratory

Jarvis Creek

Motivation

- Increasing discharge in glacier and permafrost afffected regions (McClelland et al., 2004; Peterson et al., 2002; Walvoord and Striegl, 2007)
- Increasing baseflow in Yukon and Mackenzie Rivers
- → attributed to thawing permafrost and changes in weather patterns (Walvoord and Striegl, 2007; St. Jacques and Sauchyn, 2009)
- Increasing glacier wastage globally and in Alaska (e.g. Arendt et al., 2002; Hock et al., 2009; Larsen et al., 2015; Nolan et al., 2005)

Aim of the study

Assess the role of glaciers on subarctic hydrology

→ By gaining an increased understanding of the linkages between glaciers, climate and hydrology

Research Questions:

- What are the mechanisms behind the observed increase in baseflow on regional scale? (Long-term variations in climate & glacier mass balance)
- Which pathways does glacier wastage take before reaching the ocean?

Study Area - Tanana R. watershed

Jarvis Creek (630 km²) Tanana (12,000 km²) North facing Alaska Range 138° W 153° W 150° W 147° W 144° W 141° W Jarvis Creek Alaska HWY Meterological stations 66° N Bridge **Discharge stations** Glacier Yukon River Glacier coverage 2000 Glacier coverage loss since 1950s Highways Tanana River Permafrost Distribution 65° N Continuous (>90%) Fairbanks Discontinuous (50-90%) Sporadic (10-50%) Nenaña Isolated (>0-10%) **Phelan Creek** Absent (0%) 64° N Delta Large Waterbodies (unfrozen below) unctio Canyon Central Alaska Rang Delta 63° N **Richardson HWY** Gulkana Canada 62° N Alaska Mountains 50 100 12 Κm Km

Glacier coverage: ~3%

Glacier coverage: ~4%

Phelan Creek (31 km²) South facing Alaska Range, USGS Benchmark Gulkana Glacier

Glacier coverage: ~60%,

→ Combines a number of data sources from different agencies: GHCN-D, USGS, UAF, Digital Chart of the World (DCW), Global Land Ice Measurements from Space (GLIMS), Randolph Glacier Inventory

Increasing winter baseflow in Tanana River watershed

- → Increasing annual runoff and winter baseflow (January-March) in Tanana River (Fairbanks and Nenana)
- \rightarrow Significant increase in winter baseflow at Fairbanks (p < 0.05)
- → Significant increase in annual runoff at Phelan Creek, Gulkana Glacier (p < 0.05)

Long-term variations in precipitation (1947-2014)

- → South facing side of the Alaska Range receive more winter precipitation than north-facing side (months with temperature < 0°C)</p>
- → Since ~2000, increasing winter precipitation at the south facing side (+17 %) and decreasing on the north facing side (-40 %)
 - * Long-term trends not statically significant (p > 0.05)
 - * Change point at Big Delta is statistically significant (p < 0.01)

Long-term variations in summer warmth index (1947-2014)

- Delta Junction
- Gulkana

Summer warmth index (SWI): Sum of all mean monthly air temperature > 0 °C

- → Significant increase in SWI both on north (+13 %) and south facing (+8 %) side of the Alaska Range (p < 0.05)</p>
- → SWI higher on north compared to southfacing side

Long-term variations in glacier mass balance and glacier retreat/thinning

- ightarrow Negative glacier mass balance on both the north- and south-facing side of the Alaska Range
- \rightarrow Retreat and thinning of glaciers
- \rightarrow Glacier mass balance more negative on the north- compared to south-facing side

Jarvis Creek watershed

Intensive measurement network to gain a deeper understanding of linkages between glaciers & hydrology

What pathways does glacier wastage take before reaching the ocean? → streamflow & aquifer recharge

Discharge at Jarvis Bridge and Canyon in 2015

What role do glaciers play in subarctic hydrology?

Summary:

- → Meteorological variables cannot alone explain the increase in winter baseflow and annual runoff in Tanana River
- → Meteorological variables support decreased glacier coverage and negative glacier mass balances
- → Glaciers on north-facing side of the Alaska Range are more affected compared to the south-facing side (attributed to meteorological variables)
- \rightarrow Alaska Range headwater streams are losing water to the aquifer
- → → We postulate that the reduced glacier coverage, via increased aquifer recharge, is the primary cause of the observed increase in late winter baseflow of the Tanana River
- → → Our results suggest that glaciers do not only directly support streamflow in the headwater basins during summer months, but also affect the larger scale hydrological regime of subarctic glacierized watersheds

Thank You! Any questions?

Collaborators:

- Salcha-Delta Soil and Water Conservation
 District
- U.S. Army Fort Wainwright
- Cold Regions Research and Engineering Laboratory (CRREL)
- Alaska Division of Geological & Geophysical Surveys
- Colorado State University
- U.S. Geological Survey

Funding:

My personal experience as being new to Arctic research

- "What do you mean, there is no data?!"
- "There are so many data gaps!"
- "How come precipitation is only measured continuously during summer?"

Arctic Landscape Conservation Cooperative's "Imiq Hydroclimate Database & Data Portal" has been a valuable tool for me in *identifying* existing data sources: <u>http://arcticlcc.org/projects/imiq/data-portal/</u>

