Cloud statistics at Barrow, Alaska from a two-year infrared cloud imager deployment

> Joseph Shaw and Paul Nugent Montana State University Bozeman, Montana

ICI in Barrow, Alaska: 2012-2014

Radiometrically calibrated uncooled IR detector

Radiance image

Cloud/no cloud image

Cloud optical depth image

All-Sky ICI

"Overcast" with variable cloud OD

Annual Cloud Cycle at Barrow

Two-year histogram of cloud fraction

Typical correlation ~0.9 for different ARM sensors

Best correlation with ARM data requires higher cloud-OD threshold

OD threshold = 1.0

OD threshold = 0.25

Conclusions

- Infrared imaging is well suited to measuring Arctic clouds
- Two-year deployment provided many instrument lessons
- Difference between full-image and zenith statistics depends on averaging time
- We saw more thin clouds than other sensors at the ARM/NSA site
- Interested in collaborations to use spatial and temporal information

We gratefully acknowledge financial support from the NSF Arctic Observing <u>Network and deployment support from the DoE ARM NSA Site</u>.

Difference between full-image statistics and zenith statistics depends on averaging time

IR imager is sensitive to $OD \le 4$

ICI with and without blackbody

Infrared Cloud Imager (ICI)

Compact system

IR imaging provides day-night consistency

Nighttime IR

Nighttime visible