These slides are provided for your reference.

If you wish to use any slides or images please contact the appropriate presenter first for attribution and permission.

Arctic Alerts Media Roundtable National Press Club July 13, 2016

The Study of Environmental Arctic Change

Advancing and communicating scientific understanding to help society respond to a rapidly changing Arctic

Summary

Dr. Brendan P. Kelly

bpkelly@alaska.edu

Executive Director, Study of Environmental Arctic Change (SEARCH)
University of Alaska Fairbanks

Summary

- Record winter heat wave at the North Pole;
- Warming reflected in record low sea ice;
- Record surface temperature in Greenland;
- Sea level rise increased by Greenland melts;
- Diminishing snow cover amplifying warming;
- Permafrost thaw amplifying warming via CO₂;
- Warming Arctic increases extreme events.

Arctic Sea Ice

Dr. Walt Meier

walt.meier@nasa.gov

NASA Goddard Space Flight Center Greenbelt, MD

2016 Arctic Alerts: Sea Ice

- Unusual weather over the ice so far in 2016
- Record low sea ice through June
- Response of sea ice to weather is changing because the ice is thinner

Below freezing Above freezing

Warm

Cold

Arctic Ocean area covered by sea ice in September 1979 - 2015

Melting Ice Sheets and Sea Level Rise

Dr. Marco Tedesco

mtedesco@ldeo.columbia.edu

Lamont-Doherty Earth Observatory of Columbia University

GREENLAND: ARCTIC IMPACT AND BEYOND

Impact and feedback

- Global sea level rise
- Ocean circulation
- Ecosystems
- Earth's climate (albedo)
- Atmospheric patterns
- Sea ice

Lamont-Doherty Earth Observatory
COLUMBIA UNIVERSITY | EARTH INSTITUTE

SURFACE MELTING AND SEA LEVEL RISE

Surface melting is becoming the major contribution to mass loss in Greenland

MELT EXTENT IN GREENLAND HAS BEEN INCREASING

12 % of Greenland is melting more on average today than in 1979 (~ extent of Kansas)

MELTING AND SURFACE TEMPERATURE IN 2016

SURFACE TEMPERATURE RECORD

2016 Arctic Alerts:

MELTING ICE SHEETS AND SEA LEVEL RISE

- 1) Surface melting has been the major contribution to sea level rise from Greenland over the past years
- 2) Over the past 30 years melt extent has been increasing, covering ~ 12 % more of the Greenland ice sheet than 37 years ago
- 3) In 2016 , melting in Greenland started early and is above the average through July 5^{th}
- 4) Surface temperature in Greenland set new records for the period April June 2016

Declining Spring Snow Cover Extent Over Northern Hemisphere Lands

Dr. David A. Robinson

Rutgers University,
Piscataway, NJ

April 21, 2016: MODIS

Unusually early 2016 snow melt: Alaska & eastern Siberia

May 29, 2016: MODIS

Average Northern Hemisphere continental snow cover extent

NH Spring (March-June) snow extent anomalies

Anomalies derived from 1981-2010 mean

May continental snow cover extent anomalies: deviations from normal 1967-2016

Summing up

Spring decline in snow extent

- Occurring from the middle latitudes to the Arctic
- Shows significant Arctic decline during the past 10 years in May and June
- The loss of spring continental snow extent is similar to the loss of late summer Arctic sea ice extent

Spring (March-June)
Northern Hemisphere
continental snow cover
extent: 1967-2016

Million km²

Source: www.snowcover.org

Changing Permafrost

Dr. Ted Schuur

ted.schuur@nau.edu

Permafrost Action Team Lead,
Study for Environmental Arctic Change Program (SEARCH)

Center for Ecosystem Science and Society, Northern Arizona University

Permafrost is Perennially Frozen Ground

Permafrost Distribution

Permafrost Temperatures Are Increasing

27

Triggers of Permafrost Thaw Climate:

Arctic warming 2x faster than globe

2016 record warm conditions

Ecosystem Disturbance:

 Fires burn soil organic layer, which insulates permafrost

 Increased frequency of large fire years + extreme fire events

2015 Alaska fire season,
 2nd largest area burned

Why Should Arctic Residents Care?

Why Should Global Society Care?

Permafrost Carbon Emissions

Permafrost Zone Soil Carbon

Vulnerable Fraction 5-15% by 2100

Equivalent to ~75 ppm atm CO₂

Similar in amount to biospheric sources (deforestation)

Less than human sources (fossil fuels)

Atmospheric Response to a Warming Arctic

Dr. Jennifer Francis

francis@imcs.rutgers.edu

Sea Ice Action Team Lead,
Study for Environmental Arctic Change Program (SEARCH)

Rutgers University

- > A trigger for rapid Arctic warming
- > A responder to disappearing ice and snow
- > A connection to mid-latitude weather

Jennifer Francis, PhD

Jan. – June Air Temperatures

Air Temperature Anomaly

A Warm Arctic:

- => smaller N-S temperature difference
- disrupted jet stream

Why care about a weak jet stream? Strong Weak

Warm Arctic => Extreme Events More Likely

Extreme events in 2016

Summary

- Record winter heat wave at the North Pole;
- Warming reflected in record low sea ice;
- Record surface temperature in Greenland;
- Sea level rise increased by Greenland melts;
- Diminishing snow cover amplifying warming;
- Permafrost thaw amplifying warming via CO₂;
- Warming Arctic increases extreme events.