Arctic System Synthesis Workshop: New Perspectives through Data Discovery and Modeling

Workshop Organizing Committee:

Charles J. Vörösmarty & Dave McGuire (Co-Chairs), Janet Intrieri, Larry Hinzman, Marika Holland, Maribeth Murray, Josh Schimel, John Weatherly

Horizon Wimba Interface

Welcome & Introductions

- Community Participants (40 as of 25 March 2007) http://www.arcus.org/arcss/etm/march_07/p_list.html
- Organizing Committee (OC) Members (* Also ARCSS Committee Member)
 - Charles Vörösmarty*
 - Larry Hinzman
 - Marika Holland*

John Weatherly

- Maribeth Murray*
- Janet Intrieri (NSF ARCSS)
 - OC Members unable to attend: Josh Schimel, A. David McGuire
- Additional ARCSS Committee (AC) Members
 - Mark Serreze

Michael Steele

- Additional NSF
 - Kelly Falkner, Program Director, Antarctic Sciences
- ARCSS Science Management Office (ARCUS) staff

eTown Meeting Outline

- 1. Rationale for community discussion on data and modeling
- 2. Overview of "ARCSS Synthesis Workshop: New Perspectives through Data Discovery and Modeling"
- 3. Discussion of workshop break-out group approach: "worked science examples" to stimulate discussion on innovative approaches for data management
- 4. Input on "worked science examples"
- 5. Input on broader workshop topics
- 6. Any other ideas, issues, concerns

ARCSS Move Toward Synthesis

•Aim is improved understanding of the Arctic as a system and of its particular role in the larger Earth system and its response to change

 Aim also is to engage decision-makers and the public on the importance of these issues

Motivation to Think about Data: Situation Today

- Project-specific, discipline-specific models/data sets employ highly specialized structures, resolutions, time/space domains
- Data restrictions/data policy places barriers to full access (e.g. human/social science data sets)

Motivation to Think about Data: Situation Today (continued)

- Arguably, the typical PI focuses on his/her science; frameworks for wide data & model dissemination generally lacking
- Opportunities on the horizon....IT, new analysis tools: models, instrumentation, remote sensing...IPY, AON challenges looming

ARCSS Synthesis Workshop: New Perspectives through Data Discovery and Modeling

2-4 April 2007, Bell Harbor Center, Seattle WA

- **GOAL**: Bring together data provider & data user communities to identify innovative approaches on data management and assimilation, recent developments in technology, and modeling that will advance arctic system synthesis
- **PARTICIPANTS (>50)**: Data Providers, Technology and Information Technology Experts, Data Consumers, Knowledge Brokers
 - -more than IT, archiving, metadata standards, data management
 - -eParticipation: plenary sessions video-streamed with online bulletin board
- MODE OF EXECUTION: Plenary sessions, and breakout teams focusing on "worked" science examples and broad integrative topics
- **MAJOR OUTPUT:** Report on key issues, opportunities, challenges w/ recommendations to NSF on investments

Workshop Break-out Topics

- Initial break-out groups will be organized around 5-6 "worked science examples," science challenges to frame the discussion on needs & future approaches to advance arctic system science
- These are not science planning priorities, but rather are a means of stimulating discussion on the broad issues of data management and innovation
- The workshop discussions will move from these break-out "science examples" to more integrative and broad data management issues

Goal of Science Example Approach

- Science examples will be used to "test" and illustrate the paths forward for:
 - Data access and discovery
 - Data integration and assimilation
 - Output and practical applications
 - Cultural and organizational issues
 - Other data management needs to advance arctic system synthesis

A few candidate examples for consideration...

Example 1: Designing a carbon accounting system for the pan-Arctic

- Technical issues: mapping/interpreting land use change, emission estimates, links to H2O and BGCs, feedbacks from climate variability, scaling from plot to region, sensors
- Policy engagement issues: cap and trade economics, control of industrial vs biotic sources, enforcement, lags/response times

Example 2: How do modes of Arctic atmospheric and oceanic Circulation affect life in the Arctic?

Examples:

- Arctic residents weather and ice conditions, tundra, hydrology
- Nutrients and productivity on ocean shelves
- Migration patterns (whales and reindeer)

Example 3: Conditions and consequences of a seasonally ice free Arctic

- Integrated/interdisciplinary science (socio-economics, physical climate, carbon cycle, wildlife, etc.)
- •Various tools needed: in situ data, remote sensing, paleo proxy data, models, etc.
- Has important and numerous links to global system
- Provides a context to examine data/model needs to advance synthesis science

Example 4: Data assimilation to analyze Bering Sea circulation

How can data and models be assimilated to understand the climatology and variability of regional ocean circulation and its impacts?

- Assimilation of different physical data types profiles, drifters, atmospheric reanalysis data
- Modeled hindcasts and forecasts of circulation and transport
- Further Synthesis –marine biological impacts, carbon budget

Blue dots - CTD surveys during September and October 1990 and October 1991. Red dots - 11 moorings. Yellow line - model domain for the future study. Green line - model domain for the pilot study

Reconstructed circulation at 35m during October-November 1990. Blue arrows — model results. Red arrows — moorings and observed currents.

G. Panteleev, IARC and R. Woodgate: Reconstruction of the Chukchi Sea circulation during 1990-1991

Discussion:

- Do they provide good "test topics" for discussing broad data management issues?
- Do they meet these criteria:
 - Synthesize understanding of the arctic system
 - Cross disciplinary boundaries
 - Integrate a variety of data sources (field data, modeling outputs, historical or archived data, remote sensing, etc.)
 - Link the Arctic to the broader Earth system
 - Enhance communications between scientists, stakeholders, decision-makers, and the public
- Other topics for "worked science examples"?

We also look for your feedback on.....

- Initial thoughts in response to workshop focus questions:
 - 1. What are the data and modeling needs to advance synthesis-focused arctic system science?
 - 2. What's currently working and what is needed in terms of applying data and modeling for analysis to advance science? What are the keys to success?
 - 3. What are the practical steps forward as far as mechanisms, approaches, tools and procedures, organization, standards, and related issues?
- Any other issues you would like to discuss

Thank You!

Visit the workshop webpage for eTown meeting archive and powerpoint, workshop updates, and background information on ARCSS data management