Ecological insights from the new Arctic Animal Movement Archive – tracking three decades of animal movement across a changing Arctic

Gil Bohrer
The Ohio State University
Bohrer.17@osu.edu
What to do with track data?

www.movebank.org
Environmental-Data Automated Track-Annotation System

Env-DATA

a) Albatross tracks annotated by Ocean NPP

b) Albatross data overlaid on chlorophyll-a

Dodge et al 2013, Movement Ecology
<table>
<thead>
<tr>
<th>Dataset Name</th>
<th>Data Type</th>
<th>Description</th>
<th>Provider</th>
<th>Source URL</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTER ASTGTM2 Global 30-m DEM</td>
<td>topography</td>
<td>NASA Land Processes Distributed Active Archive Center</td>
<td>https://lpdaac.usgs.gov/dataset_discovery/aster/aster_products_table</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECMWF Global Atmospheric Reanalysis</td>
<td>weather, atmosphere, hydrology</td>
<td>European Centre for Medium-Range Weather Forecasts</td>
<td>http://apps.ecmwf.int/datasets</td>
<td>1979–present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETOPO1 1-arc-minute Global Relief Model</td>
<td>topography, bathymetry</td>
<td>NOAA National Geophysical Data Center</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GlobCover</td>
<td>land cover, land use</td>
<td>European Space Agency</td>
<td>http://dup.esrin.esa.it/page_globcover.php</td>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODIS Snow</td>
<td>snow cover</td>
<td>National Snow and Ice Data Center</td>
<td>https://nsidc.org/data/nsidc-0050</td>
<td>2002–present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movebank Derived Variables</td>
<td>orographic and thermal uplift</td>
<td>Movebank</td>
<td>movebank.org</td>
<td>1979–present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA Distance to the Nearest Coast</td>
<td>distance to coast</td>
<td>NASA Ocean Biology Processing Group</td>
<td>https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEP North American Regional Reanalysis (NARR)</td>
<td>weather, atmosphere, hydrology</td>
<td>NCAR/UCAR Research Data Archive</td>
<td>http://rda.ucar.edu/datasets/ds608.0</td>
<td>1979–present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-NPP VIIRS Land</td>
<td>reflectance, other products will be added once available from NASA</td>
<td>NASA Land Processes Distributed Active Archive Center</td>
<td>https://lpdaac.usgs.gov/dataset_discovery/viirs/viirs_products_table</td>
<td>2012–present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRTM 90-m DEM</td>
<td>topography</td>
<td>CGIAR Consortium for Spatial Information</td>
<td>http://srtm.csi.cgiar.org/</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reanalysis Datasets

OSCAR Ocean Currents
NASA Daymet
NCEP
NARR
ECMWF ERA5

https://gifer.com
Flying into thin air –
Griffon vultures crossing the Himalaya Mountains

Sherub et al (2016), Biology Letters
New insight on flight strategy

Thermalling circle radius

Air density (≈ elevation)

Air speed
TE 2014: Animals on the move: Remotely based determination of key drivers influencing movements and habitat selection of highly mobile fauna throughout the ABoVE study domain

Project Lead(s)
Natalie Boelman, Lamont-Doherty Earth Observatory, Columbia Univ.

Co-Investigator(s)
Gil Bohrer, Ohio State University
Jan Eitel, University of Idaho
Mark Hebblewhite, University of Montana
Laura Prugh, University Of Washington
Lee Vierling, University of Idaho

Post-Doc(s)
Libby Ehlers, University of Montana
Scott LaPoint, Lamont-Doherty Earth Observatory, Columbia Univ.
Peter Mahoney, University of Washington
Arjan Meddens, Washington State University

Student-Graduate(s)
Miriam Handler, Ohio State University
Jyoti Jennewein, University of Idaho
Ruth Oliver, University of Idaho
Eric Palm, University of Montana
Space Robins

Long term trends in spring migration phenology

Nicole Kirkun’s Space Robin

Oliver et al 2020, Env. Res. Letters
Space Robins

Environment and demography drive migration timing and rate

Oliver et al 2020, Env. Res. Letters
Arctic Animal Movement Archive

Davidson et al 2020, Science
Roughly

2M occurrences
8000 individuals
90 species
220 Studies
Constantly updating
Why Archive?

- Standard quality control procedures
- Common access point
- Uniform metadata
- Uniform data access protocols (GUI, API)
- Data safety
- Data Discoverability, persistence
- Data sharing

The Arctic Animal Movement Archive

The Arctic Animal Movement Archive (AAMA) is a collection of studies in Movebank that contain animal movement and other animal-borne sensor data from the Arctic and Subarctic. As of November 2020, this collection includes 214 studies that contain over 43 million locations of over 12,000 animals recorded from 1988 to the present.
Collaboration!

Large-scale analysis:

Caribou parturition phenology
Caribou population

- Northern mountain (NM, n = 109)
- Southern mountain (SM, n = 127)
- Northern boreal (NB, n = 78)
- Southern boreal (SB, n = 398)
- Barren-ground (BG, n = 918)

* Significant trend
O No trend

- 50% range
- 80% range

May 5 - Jun 14
Year
Elevation (m)
May 5 10 15 20
May 20 25 30
May 4
Jun 4
Jun 9
Jun 14
BG
SM
NB
SB
NM
SM
NB
SB
NM
Long-term analysis:

Golden eagle migration phenology
Multi-species analysis:

Environmental drivers of movement rates
Technology development: Tag-based measurements

R-Move-Windspeed (Weinzierl et al. 2016 *Ecology & Evolution*)
Tag temperatures vs Reanalysis

- Alberta-BC Moose
 - $R^2 = 0.54$
 - RMSE = 7.09°C
 - Intercept = -4.90°C
 - Slope = 0.75

- Alberta Moose
 - $R^2 = 0.93$
 - RMSE = 4.91°C
 - Intercept = -5.08°C
 - Slope = 1.02

- Koyukuk Moose
 - $R^2 = 0.91$
 - RMSE = 7.25°C
 - Intercept = -7.20°C
 - Slope = 1.03

- Yukon Caribou
 - $R^2 = 0.83$
 - RMSE = 4.57°C
 - Intercept = -4.37°C
 - Slope = 0.94

- Mulchatna Caribou
 - $R^2 = 0.68$
 - RMSE = 6.08°C
 - Intercept = -1.93°C
 - Slope = 0.67

ECMWF Temperature (°C)
Coming soon to a migration corridor near you

NASA Ecological Forecasting Y2Y connectivity project
Acknowledgements

Sarah Davidson – Movebank curator and chief scientist wrangler

Env-Data developers: Martin Wikelski, Roland Keys, Rolf Weinzierl

Movebank IT team: Martin Strohas, Friedrich Schaeuffelhut, Matthias Berger

ABoVE Animals on the Move team

All the wonderful people and agencies that contribute data to the Arctic Archive