Empirical temperature downscaling: Improving thermal information detail

David E. Atkinson

International Arctic Research Center Department of Atmospheric Sciences University of Alaska Fairbanks

The Problem

High latitude regions are:

- > large
- > topographically complex and diverse
- > poorly serviced by weather instrumentation

Problematic for users who require spatially detailed temperature

- > biological energetics
 - > plants
 - > hibernation energetics
- > cryological concerns
 - > glacier melt
 - > permafrost modeling
- > hydrology
 - > limnology
- > paleoclimatic work
 - > establish current temperature regime

Example: Canadian Arctic Islands > need: spatially detailed mean July temperatures

Example: Canadian Arctic Islands

> need: spatially detailed mean July temperatures

Typical result when data are contoured: > significant spatial detail not present

Need

Improve spatial detail for surface air temperature

Options include: > targeted monitoring networks > dynamical weather models > empirical models

Focus here on an <u>empirical</u> modeling solution to calculate surface air temperature at high spatial resolution

Definition

An "Empirical" or distributed model:

> uses information about location to improve interpolation

Does not "generate" original data - works with existing estimates > weather stations or model input

Topoclimate Model v2.0 (2007)

Atkinson and Francois Gourand (MA student, MeteoFrance)

Input data sources

- Digital Elevation Model GTOPO30
- NOAA National Weather Service GFS0.5 model inputs:
 - Q Surface
 - SLP
 - Lup, Kup, Kdn
 - @ Standard reporting levels
 - T, u, v, cloud water
 - Total cloudiness
- Surface weather observations
 - (for correction of final estimate sfc obs are not used to develop the temperature estimate)

Topoclimate Model v2.0 (2007)

Atkinson and Francois Gourand (MA student, MeteoFrance)

Input data sources

- Digital Elevation Model GTOPO30
- NOAA National Weather Service GFS0.5 model inputs:
 - □ @ Surface
 - SLP
 - Lup, Kup, Kdn
 - @ Standard reporting levels
 - T, u, v, cloud water
 - Total cloudiness
- Surface weather observations
 - (for correction of final estimate sfc obs are not used to develop the temperature estimate)

USGS GTOPO30 DEM ~1km resolution

Topoclimate Model v2.0 (2007)

Atkinson and Francois Gourand (MA student, MeteoFrance)

Input data sources

- Digital Elevation Model GTOPO30
- NOAA National Weather Service GFS0.5 model inputs:
 - Q Surface
 - SLP
 - Lup, Kup, Kdn
 - @ Standard reporting levels
 - T, u, v, cloud water
 - Total cloudiness
- Surface weather observations
 - (for correction of final estimate sfc obs are not used to develop the temperature estimate)

Topoclimate Model v2.0 (2007)

Atkinson and Francois Gourand (MA student, MeteoFrance)

Input data sources

- Digital Elevation Model GTOPO30
- NOAA National Weather Service GFS0.5 model inputs:
 - □ @ Surface
 - SLP
 - Lup, Kup, Kdn
 - @ Standard reporting levels
 - T, u, v, cloud water
 - Total cloudiness
- Surface weather observations
 - (for correction of final estimate sfc obs are not used to develop the temperature estimate)

Model processes

- Elevation effects
- Drainage flow
- Adiabatic compression/Foehn effect
- Surface radiation effects
- Coastal modification

Coarse temperature profile from Weather Service model

Elevation values from DEM > Need temperature estimates For all possible elevation values

Elevation cross section

Represent using a function
> solve for T at all possible values of elevation
> one T estimate for every pixel on the DEM

$T = B_0 + B_1^*E + B_2^*E^2 \dots etc$

Elevation effects

- > Polynomial fit to vertical profile
- > Upper and lower range "split" profile to handle strong low-level inversions
- > Provides initial T estimate

FIG. 2.7 – Method to get a first guess of 2 m temperature, using the DEM and GFS vertical profiles

Flow accumulation

- > aspect/gradient driven
- > Handles density drainage

1. Establish the flow pattern

FIG. 2.5 – Method to compute a flow direction in flat areas

2. Perform accumulation

FIG. 2.6 – Method to compute the flow accumulation, step by step.

Drainage flow

> Critical for properly representing sfc. radiation cooling

- > Define a scaling using Lup (left plot) (i.e. drainage potential increases as 1/T²)
 - form of scaling curve response to insufficient cooling at lowest T, excessive at higher T

FIG. 2.8 – On the left : empirical function used to scale drainage effect. On the right : cold air generation function.

Foehn effect Scale for obstacle height - greater height = greater potential effect

FIG. 2.10 – Magnitude of the wind shelter index, potential for Foehn effect

Grad $(\%)$	0]0,3]]3,7]]7,12]]12,18]]18,25]]25,35]]35,50]]50,65]	> 65
$m_{direction}$	0	1	2	3	4	5	6	7	8	9

TAB. 2.1 - Magnitude m of the wind shelter index, function of the maximum slope gradient

Scale for deflection considerations

FIG. 2.11 – Build of the wind shelter index, including wind potential deviation

Local surface radiation considerations

> Two parameters derived:

net radiation nr = dl + ds - ul - us

energy balance
$$c_G \frac{\partial T_G}{\partial t} = nr - sh - lh + gf$$

- > But results were not consistent
- > Simpler parameter adopted using only Kdn to drive daytime sfc heating

FIG. 2.12 – Radiatives flux at ground level

Cold interior lowlands - drainage effect - captured

Impact of adding drainage, winds, adiabatic compression > 10 deg C diff in many areas 12030712 Allow and the -170-160-150-140-130-10 -8 $^{-6}$ $^{-4}$ -2 $^{-1}$ 2 10 1 6 8 4

Diagnostics

- > spatial plot of bias
- > these form the basis for the nudging of the final results

2007-08-12 0400 AKDT

Areas of improvement

- > Grid cells assumed square; really are not
- > Cloud levels (high, medium, low)
- > Dig into questions of GFS low level wind behavior and relationship to topography
- > Vertically interpolate winds to improve their deployment within the model
- > Continue working on using radiation budgets rather than individual components
- > Expand to run with other models for input
 - opens up futurecast/hindcast climatologies
- > Tighter control of weather stations used for verification
 - improve nudging interpolation (more PRISM based rather than a IDW contour)
- > Introduce soil/land properties vegetation (e.g. affects drainage?)
- > Study need for inclusion of explicit coastal effect handler
 - introduce sea breeze module
- > Drainage issues and low level jets LLJ can form just above strong thermal gradients and can break them up
- > Glacier cooling/katabatic effects
- > Slope heating differential effects

Uncertainty issues

For downscaling work,

> Finer-scale measurements and representation have greater uncertainty

> Error bars can be difficult to assign a priori - for many models multiple runs are conducted - ensembles - that provide feeling for ranges

> Also comparisons where ever possible with observed data are conducted

> For projection downscaling work, key lies in selecting most appropriate largescale simulations

> Eg Pete Larsen - a lot of effort went into identifying the five GCMs that seemed to work the best for AK

Agriculture Canada Plant Hardiness Zones

Parameters include:

- Canadian plant survival data
- minimum winter temperatures
- length of the frost-free period
- summer rainfall
- maximum temperature
- snow cover
- January rainfall
- maximum wind speed

Topoclimate Model v2.0 (2007)

Derived parameters (static)

- Slope gradient and aspect (8 directions)
- Shelter/Exposure raiting
 - A location behind a mountain range, for example, will be less exposed to cold air advection than a location on a plain
- Flow accumulation
 - Classic hydrology parameter but applies when density flows are a factor

Coastal effect

- > Built but not implemented
- > Coastal results worked fairly well without intervention

Shelter/Exposure determination

> Determines extent to which cell affected by large-scale flow

FIG. 2.4 – Maximum slope gradient in a given direction (Northeast on the figure)

Adiabatic compression/Foehn effect

- > Build mean wind vector over lowest layers (atm stability factored in w. Froude #)
- > Determine nature of exposure (shelter, obstacle wrt wind dir)
- > Scale for obstacle height greater height = greater potential effect
- > Scale for deflection considerations

FIG. 2.9 – Exposure to wind/shelter index mechanism

Results

Diagnostics panels output

> various static and run-time parameters 12030712 Fairbanks Airport PAFA

Diagnostics panels output

> radiation components

06030700

Diagnostics - biases

- > comparisons w. stations
- > 115 stns available

Diagnostics - biases

- > comparisons w. stations
- > 115 stns available

Blue line= base est. Red line= all effects

Diagnostics

- > comparisons w. stations
- > 115 stns available

Blue line= base est. Red line= all effects

Diagnostics

- > visual inspection for problems
- > GFS bug revealed persistent snow patches

FIG. 3.10 – Albedo bias in GFS and its consequence on temperature