BEST

Bering Ecosystem Study Program
The Bering Sea
What is BEST?

• A program designed to understand and predict the consequences of climate change for Bering Sea marine ecosystems

• End to End: Climate, physics, primary production, zooplankton, fish, seabirds, marine mammals and people

• Strong social sciences component coming on line
Why Study the Bering Sea?

• One of world’s most productive regions
• Very rich assemblage of seabirds, marine mammals, fish, shellfish
• Commercial and subsistence economy
• Dutch Harbor: #1 - 2 U.S. port $ landings
• 50% all fish / shellfish landings in U.S.
Wind Speed Cubed at St. Paul Is.

P. Stabeno,
The Middle Shelf: M2 Mooring
Changing Climate

Bering Sea ice has retreated over last two decades (1970 - 2002)

Percent ice cover within gray box on map above

P. Stabeno, PMEL
Vertically Averaged Temperature (°C) at Site M2

P. Stabeno, PMEL
Temperature and fluorescence at Sites M2 (left) and M4 (right)

P. Stabeno, PMEL

1996

M4

2004

M2
Ice, Wind, Bloom, Copepods

- **Early Ice Retreat**: Late Bloom, Warm Water - Large Copepod Biomass
- **Late Ice Retreat**: Early Bloom, Cold Water - Small Copepod Biomass

February March April May June

G. Hunt, U. Calif. Irvine
Emiliania huxleyi cell
Bering Sea Coccolithophore Bloom

April 25, 1998
SeaWiFS program
Biomass of Medusae in the S.E. Bering Sea
Oscillating Control Hypothesis

Cold Regime
(Bottom-Up Regulation)

Beginning of Warm Regime
(Bottom-Up Regulation)

Warm Regime
(Top-Down Regulation)

Beginning of Cold Regime
(Both Top-Down and Bottom-Up Regulation)

Zooplankton
Larval Survival
Abundance of Piscivorous Adult Fish
Juvenile Recruits
Fur Seal Pups at the Pribilof Is.

Fur seal pups, St. George Island, 1970-2002

Thousands of pups
Mean pups
Error bars = 95% CI

Year

NMML, NOAA
History of BEST

• Sept. 2002: Laguna Beach, Initial Planning
• Mar. 2003: Seattle, Science Plan Workshop
• Oct. 2004: Science Plan Published
• May 2005: Open Implementation Workshop
• June 2005: Draft Implementation Plan needed by NSF
Laguna Beach Workshop, Sept. 2002

<table>
<thead>
<tr>
<th>Who</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Beamish</td>
<td>Agreed to the development of:</td>
</tr>
<tr>
<td>K. Drinkwater</td>
<td>1) Bering Sea Ecosystem study- BEST</td>
</tr>
<tr>
<td>M. Flint</td>
<td>a) Envisaged as 5 to 10 year project</td>
</tr>
<tr>
<td>J. Grebmeier</td>
<td>b) Funding at $6-7 million/yr</td>
</tr>
<tr>
<td>R. Harris</td>
<td>c) Year-round field program with 2 ships and an icebreaker for 3-4</td>
</tr>
<tr>
<td>G. Hunt</td>
<td>months</td>
</tr>
<tr>
<td>N. Karnovsky</td>
<td>2) Ecosystem Studies of Sub-Arctic Seas- ESSAS</td>
</tr>
<tr>
<td>H. Loeng</td>
<td></td>
</tr>
<tr>
<td>J. Morrison</td>
<td></td>
</tr>
<tr>
<td>J. Napp</td>
<td></td>
</tr>
<tr>
<td>B. Norcross</td>
<td></td>
</tr>
<tr>
<td>G. Ottersen</td>
<td></td>
</tr>
<tr>
<td>C. Pautzke</td>
<td></td>
</tr>
<tr>
<td>N. Shiga</td>
<td></td>
</tr>
<tr>
<td>P. Stabeno</td>
<td></td>
</tr>
<tr>
<td>N. Swanberg</td>
<td></td>
</tr>
</tbody>
</table>
Seattle Workshop, Mar. 2003

<table>
<thead>
<tr>
<th>Who</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Arrigo</td>
<td>Developed Science Plan for BEST:</td>
</tr>
<tr>
<td>R. Brodeur</td>
<td>1) Focus: Predicting effects of climate change on sustainability of eastern Bering marine ecosystems</td>
</tr>
<tr>
<td>D. Caron</td>
<td>2) Area to cover: Peninsula to southern Chukchi Sea</td>
</tr>
<tr>
<td>K. Coyle</td>
<td>3) All Seasons</td>
</tr>
<tr>
<td>J. Grebmeier</td>
<td>4) End to End: Including people</td>
</tr>
<tr>
<td>E. Hofmann</td>
<td></td>
</tr>
<tr>
<td>G. Hunt</td>
<td></td>
</tr>
<tr>
<td>G. Kruse</td>
<td></td>
</tr>
<tr>
<td>E. Lessard</td>
<td></td>
</tr>
<tr>
<td>P. Livingston</td>
<td></td>
</tr>
<tr>
<td>L. Madden</td>
<td></td>
</tr>
<tr>
<td>W. Maslowski</td>
<td></td>
</tr>
<tr>
<td>L. McNutt</td>
<td></td>
</tr>
<tr>
<td>J. Napp</td>
<td></td>
</tr>
<tr>
<td>J. Overland</td>
<td></td>
</tr>
<tr>
<td>G. Owletuck</td>
<td></td>
</tr>
<tr>
<td>M. Pete</td>
<td></td>
</tr>
<tr>
<td>S-I. Saitoh</td>
<td></td>
</tr>
<tr>
<td>R. Sambrotto</td>
<td></td>
</tr>
<tr>
<td>P. Stabeno</td>
<td></td>
</tr>
<tr>
<td>L. Tupas</td>
<td></td>
</tr>
</tbody>
</table>
SSC Implementation
Teleconferences, Mar. - May 2005

<table>
<thead>
<tr>
<th>Who</th>
<th>Result</th>
</tr>
</thead>
</table>
| Ben Fitzhugh, Rolf Gradinger, Eileen Hofmann, George Hunt, Anthony Merculieff, Arthur J. Miller, Jeff Napp, Jim Overland, Kenneth Rose, R. Sambrotto, Sharon L. Smith, Peter Winsor | Draft Implementation Plan:
1) NSF Guidance: 3-5 years- aim for: 4 field seasons, then 2nd phase
2) NSF Guidance: $1-3 million/yr- aim for: $3-4 million from NSF
3) NSF Guidance- Ship Time-2 months icebreaker plus an ice-strengthened ship- aim for: 3 months of icebreaker time, 4 months of ice-strengthened ship
4) Focus on one area of study and do well |
BEST Research Priorities

• Primary Focus:
 How is the Disappearance of Sea Ice Affecting the eastern Bering Sea Ecosystem and the people dependent on it?

• Secondary:
 a) What Controls the abundance of nutrients on the shelf and what is the influence of climate variability?
 b) What will be the ecosystem effects of a warmer and more stratified Bering Sea?
 c) Regional studies: Northern Bering; Pribilofs; Aleutian Passes
BEST Research Priorities

- Focus on the Spring- 1 March to 30 June
- How does climate drive ice conditions?
- How does sea ice affect the type, amount and fate of primary production?
- What controls the biomass of zooplankton in spring and what role do they play?
- How do these bottom-up factors interact with top-down mechanisms?
- What are the expected impacts on upper trophic-level organisms including people?
Implementation Plan - Management

• Interagency Oversight Committee

• Science Steering Committee

• Project Office (once project funded)
 Chief Scientist
 Executive Committee (3-4 people)

• Working Groups as Needed
 (data management, modeling, integration & outreach, etc)
BEST Bering Sea Partners

• NSF
 a) SEARCH NSF-sponsored program on Arctic Change
 i) Bering Ecosystem Study (BEST)

• NOAA
 a) National Marine Fisheries Service (NMFS)
 b) National Marine Mammal Laboratory (NMML)
 c) Pacific Marine Environmental Laboratory (PMEL)
 d) North Pacific Climate Regimes and Ecosystem Productivity Program (NPCREP)
 e) Loss of sea Ice (LOSC) (proposed for IPY)

• North Pacific Research Board (NPRB)
• Alaska Ocean Observing System (AOOS)
• US Fish and Wildlife Service (USFWS)
• US Geological Survey (USGS)
Planned NPCREP Moorings and Lines
BEST Bering Sea Partners

International Partners

• North Pacific Anadromous Fish Commission (NPAFC)
 a) Bering Aleutian Salmon International Survey (BASIS)

• Census of Marine Life (CoML)

• International Pacific Halibut Commission (IPHC)

• Ecosystem Studies of Sub-Arctic Seas (ESSAS) - GLOBEC
 a) International Polar Year (IPY) programs
BEST Time Line

• 2002 Sept. Planning Workshop, Laguna Beach
• 2003 Mar. Planning Workshop, Seattle
• 2004 Oct. Science Plan Published
• 2005 Mar. SSC Formed
• 2005 May. Open Implementation Workshop
• 2005 June. Implementation Plan Ready
• 2005 ? Late Fall. NSF Announcement of Opportunity
• 2006 Proposals Due 90 days later
• 2007 Mar. Begin Field Program
BEST Information Sources

• Web Site: http://www.arcus.org/Bering/index.html

• Science Plan: Available in Hard Copy at:
 Arctic Research Consortium of the U.S. (ARCUS)
 3535 College Road, Suite 101
 Fairbanks, AK 99709
 Phone: 907-474-1600; Fax: 907-474-1604

• Planning Group: c/o George L. Hunt, Jr.
 School of Aquatic & Fishery Sciences
 University of Washington
 Email: geohunt2@u.washington.edu
Goal of ESSAS

• The goal of the ESSAS Program is to compare, quantify and predict the impact of climate variability on the productivity and sustainability of Sub-Arctic marine ecosystems.
Major Research Questions

• How will the External Forcing Functions be Affected by Climate Change?

• How will Changes in the External Forcing Mechanisms Affect BioPhysical Coupling?

• How will Changes in BioPhysical Coupling Influence Biological Interactions?